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Abstract

In this article we develop a method of solving general one-dimensional Linear Quadratic Regulator (LQR)
problems in optimal control theory, using a generalized form of Fibonacci numbers. We find the solution
R (k) of the corresponding discrete-time Riccati equation in terms of ratios of generalized Fibonacci num-
bers. An explicit Binet type formula for R (k) is also found, removing the need for recursively finding the
solution at a given timestep. Moreover, we show that it is also possible to express the feedback gain, the
penalty functional and the controller state in terms of these ratios. A generalized golden ratio appears in
the corresponding infinite horizon problem. Finally, we show the use of the method in a few examples.
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1 Introduction

In the optimal control theory, one focuses on the
problem of controlling a dynamic system under min-
imization of a penalty (or cost) functional. One of
the most well-known optimal control problems is Lin-
ear Quadratic control, where the dynamic system is
described by a set of linear differential equations,
or linear difference equations, depending on whether
continuous- or discrete-time is used. Moreover, the cost
is described by a quadratic functional. In order to solve
the discrete-time, finite horizon, linear quadratic con-
trol problem, typically one solves a nonlinear Riccati
difference equation recursively. We refer to the books
Kwakernaak and Sivan (1972) and Lewis and Syrmos
(1995) for more information on optimal control theory.

The Italian matematician Leonardo of Pisa, known
as Fibonacci, studied in the 13th century the growth
of an idealised rabbit population and arrived in
the nowadays famous Fibonacci sequence (Fn) =

(0, 1, 1, 2, 3, 5, 8, 13, . . .), described by the recursive
equation

Fn = Fn−1 + Fn−2,

F0 = 0, F1 = 1.

These remarkable numbers have been shown to appear
in such diverse fields as nature, art, geometry, architec-
ture, music and even for calculating π. Moreover, one of
the most fascinating facts is that the ratio Fn/Fn−1 of
two consecutive numbers converge to the golden ratio
(or golden section) ϕ given by

ϕ =
1 +
√

5

2
≈ 1.618.

For more information regarding Fibonacci numbers
and the golden ratio, we refer to The Fibonacci
Association (http://www.mscs.dal.ca/Fibonacci) and
its periodic publication The Fibonacci Quarterly
(http://www.fq.math.ca). Other sources of interests
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are e.g. the books Dunlap (2003), Huntley (1970),
Livio (2002) and Walser (2001).

There is in general not much known about the con-
nection between optimal control and Fibonacci num-
bers. In Benavoli et al. (2009) relationships between
the Fibonacci sequence and the Kalman filter gain, re-
spectively its estimation error covariance, are derived
for a simple plant model

x (t+ 1) = x (t) + w (t) ,

y (t+ 1) = x (t) + v (t) ,

where w and v are noise terms of equal variance. It
is shown that the steady-state Kalman gain and the
estimation error covariance are then equal to the golden
section and its conjugate, respectively.

For the more general case of a state equation

x (t+ 1) = ax (t) + w (t)

and non-equal noise variances, the authors show that
two particular choices of a recover a steady-state
Kalman filter gain equal to the golden section, respec-
tively the conjugate golden section. Similar golden sec-
tion filter gain situations are derived in Capponi et al.
(2010) for the continuous-time Kalman filter and for
the non-linear Benes filter.

Also somewhat related, it is shown in the article
Lang (2004) that generalized Fibonacci numbers can
be generated by a continuous-time Riccati differential
equation.

In this article we investigate the relation between
the one-dimensional linear quadratic control problem
and Fibonacci numbers. More specific, we show that
we can solve the corresponding discrete-time Riccati
equation by introducing a generalized sequence of Fi-
bonacci numbers and express different quantities in
the LQR problem as ratios of generalized Fibonacci
numbers. We also find explicit Binet type formulae
based on these generalized Fibonacci numbers, remov-
ing the need to recursively find the solution at a given
timestep. Finally, we show how to practically use the
generalized Fibonacci sequences by numerically solving
four linear quadratic examples in the last section.

2 General Setting of a Finite
Horizon Discrete-Time LQR

Consider an r-dimensional discrete-time system

x (k + 1) = Φx (k) + Γu (k) , k = 0, 1, 2, . . . , N, (1)

y (k) = ∆x (k) ,

where x (·) ∈ Rr is the state vector, u (·) ∈ Rs the
input vector, y (·) ∈ Rt the output vector, Φ ∈ Rr×r

the state matrix, Γ ∈ Rr×s the input matrix and ∆ ∈
Rt×r the output matrix. Moreover, we define the cost
functional J = J (x,u) by

J =
1

2

N−1∑
m=0

[
x (m)

T
Qx (m) + u (m)

T
Pu (m)

]
,

where P is a positive definite matrix and Q is a pos-
itive semidefinite matrix. The cost functional is then
minimized (see e.g. Åström and Wittenmark (1996))
by the optimal feedback control law

u (k) = −L (k)x (k) , (2)

where the feedback gain is given by

L (k) =
[
ΓTR (k + 1) Γ + P

]−1
ΓTR (k + 1) Φ (3)

and R (k) is the symmetric and positive semidefinite
matrix that is the solution of the discrete-time Riccati
difference equation

R (k) = Q+ ΦTR (k + 1) Φ− ΦTR (k + 1) Γ[
ΓTR (k + 1) Γ + P

]−1
ΓTR (k + 1) Φ,

R (N) = 0.

This can be simplified as (see e.g. Balchen (1977))

L (k) = P−1ΓT Φ−T (R (k)−Q) , (4)

where R (k) is the solution of the difference equation

R (k) = Q+ ΦTR (k + 1)
[
I + ΓP−1ΓT

R (k + 1)]
−1

Φ, k = N − 1, . . . , 1, 0, (5)

R (N) = 0.

We will show that this particular system in dimen-
sion r = 1 has a special connection to a recurrence
equation of Fibonacci type. For simplicity, we first con-
sider the case when Φ2 = I = 1 and later generalize
the result to any Φ.

Remark 1 The above results are also true for a more
general cost functional

J =
1

2
x (N)

T
Q0x (N)

+
1

2

N−1∑
m=0

[
x (m)

T
Qx (m) + u (m)

T
Pu (m)

]
,(6)

when the initial value R (N) = 0 is replaced with
R (N) = Q0. It is also possible to include linear terms
in the penalty functional by making appropriate trans-
formations.

2
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3 Generalized Fibonacci Sequences

We define the generalized Fibonacci sequence
(fn)n=0,1,2,... by the recurrence equation

fn = afn−1 + bfn−2, (7)

f0 = 0, f1 = 1.

Remark 2 When a and b are integers, fn is also
known as the Lucas sequence Un (a,−b) , see e.g. Dick-
son (2002) or Ribenboim (2000). The special case
a = b = 1 gives the well known Fibonacci sequence
Fn = (0, 1, 1, 2, 3, 5, 8, 13, . . .), from hereon denoted by
capital F.

We will from hereon assume that b > 0 and a 6= 0 are
real numbers, even though a lot of the results in this
section easily can be generalized in the case of complex
coefficients a and b. However, due to the identification
between these coefficients and the physical parameters
arising from the LQR-problem, it is natural to use the
imposed restrictions.

Moreover, we introduce the negative generalized Fi-
bonacci numbers by

f−n =
(−1)

n+1

bn
fn, (8)

which in particular gives f−1 = 1/b and f−2 = −a/b2.
Depending on the values of a and b, we have the fol-
lowing situations:

Theorem 3 Assume that we have defined the sequence
(fn)n=0,1,2,3,... = (f0, f1, f2, . . .) as in (7) above. Then

1. (|fn|) will diverge to infinity as n→∞ if |a|+b >
1.

2. (|fn|) will converge to 1
1+b as n→∞ if |a|+b = 1.

3. (|fn|) will converge to zero as n→∞ if |a|+b < 1.

Proof. Cases (1) and (3) are obvious. For case (2)
with 0 < a < 1, consider the recurrence equation fn =
(1− b) fn−1 + bfn−2, f0 = 0, f1 = 1, where 0 < b < 1.
Then we have the two basis cases f1 = 1 and f2 = 1−b.
Note that

lim
n→∞

n−1∑
k=0

(−1)
k
bk =

1

1 + b
.

Hence the proof is complete if we can show that fn =∑n−1
k=0 (−1)

k
bk. Indeed, the assumptions

fp =

p−1∑
k=0

(−1)
k
bk

and

fp−1 =

p−2∑
k=0

(−1)
k
bk = fp − (−1)

p−1
bp−1,

implies that

fp+1 = (1− b) fp + bfp−1

= (1− b) fp + b
(
fp − (−1)

p−1
bp−1

)
= fp − (−1)

p−1
bp = fp + (−1)

p
bp

=

p∑
k=0

(−1)
k
bk.

Thus the proof follows by the induction principle. In
the same way, it easily follows in the case −1 < a < 0
that the nth generalized Fibonacci number is

fn = (−1)
n−1

n−1∑
k=0

(−1)
k
bk,

which also implies that

lim
n→∞

|fn| = lim
n→∞

n−1∑
k=0

(−1)
k
bk =

1

1 + b
.

By using a so called Binet formula, it is possible to
find the nth generalized Fibonacci number fn explicitly
without the need for previous values. The formula is
given in the following theorem:

Theorem 4 The nth generalized Fibonacci number fn
is given by

fn =

(
a+
√
a2+4b
2

)n
−
(

a−
√
a2+4b
2

)n
√
a2 + 4b

. (9)

Proof. Let us denote

ϕ =
a+
√
a2 + 4b

2
.

Then

a− ϕ =
a−
√
a2 + 4b

2
= − b

ϕ

This implies that ϕ1 = ϕ is one solution of the charac-
teristic equation

ϕ2 = aϕ+ b (10)

and ϕ2 = a− ϕ the other, since

a− ϕ = − b
ϕ
⇔

−b = (a− ϕ) [a− (a− ϕ)]⇔
(a− ϕ)

2
= a (a− ϕ) + b.

3
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The difference between the solutions is then

ϕ1 − ϕ2 = ϕ− (a− ϕ) = 2ϕ− a =
√
a2 + 4b.

We thus need to prove the formula

fn =
ϕn

1 − ϕn
2

ϕ1 − ϕ2
=
ϕn − (a− ϕ)

n

2ϕ− a
.

It easily follows that

f0 =
ϕ0 − (a− ϕ)

0

2ϕ− a
=

1− 1

2ϕ− a
= 0,

f1 =
ϕ1 − (a− ϕ)

1

2ϕ− a
=

2ϕ− a
2ϕ− a

= 1.

Now assume that

fp−1 =
ϕp−1 − (a− ϕ)

p−1

2ϕ− a
,

fp =
ϕp − (a− ϕ)

p

2ϕ− a
.

Then

fp+1 = afp + bfp−1

= a
ϕp − (a− ϕ)

p

2ϕ− a
+ b

ϕp−1 − (a− ϕ)
p−1

2ϕ− a

=
1

2ϕ− a
[
(aϕ+ b)ϕp−1−

(a (a− ϕ) + b) (a− ϕ)
p−1
]

=
1

2ϕ− a

[
ϕ2ϕp−1 − (a− ϕ)

2
(a− ϕ)

p−1
]

=
ϕp+1 − (a− ϕ)

p+1

2ϕ− a
.

Thus the proof follows by the induction principle.

Remark 5 The quantity ϕ is the well known Golden
ratio

ϕ =
1 +
√

5

2
≈ 1.618

when a = b = 1.

We define the sequence of Fibonacci ratios
(Gn)n=1,2,3,... by

Gn =
fn+1

fn
.

We then find the consecutive elements Gn by rewriting
(7) as

fn+1

fn
= a+

b
fn

fn−1

⇔ Gn = a+
b

Gn−1
, (11)

or reversed

Gn−1 =
b

Gn − a
,

with initial value G1 = a. Clearly, a > 0 implies that
Gn > 0 and a < 0 implies that Gn < 0 for all n, i.e.

aGn > 0.

Therefore aGn = a2 + a2b
aGn−1

≥ a2 and thus also aGn =

a2 + a2b
aGn−1

≤ a2 +b for n = 1, 2, 3, . . . . Hence, it follows

that

a2 ≤ aGn ≤ a2 + b,

with equality only for n = 1 and n = 2, respectively. In
a similar fashion, it follows that the reciprocal sequence
(Hn)n=1,2,3,... defined by

Hn =
fn−1

fn
,

H1 = 0,

can be generated by the recursive relation

Hn =
1

a+ bHn−1
(12)

and is limited by

1

a2 + b
≤ Hn

a
≤ 1

a2

for n = 2, 3, 4, . . . , with equality only for n = 2 and
n = 3, respectively.

As a consequence of the Binet formula (9), we get
explicit expressions for Gn and Hn by the formulae

Gn =

(
a+
√
a2+4b
2

)n+1

−
(

a−
√
a2+4b
2

)n+1

(
a+
√
a2+4b
2

)n
−
(

a−
√
a2+4b
2

)n , (13)

Hn =

(
a+
√
a2+4b
2

)n−1

−
(

a−
√
a2+4b
2

)n−1

(
a+
√
a2+4b
2

)n
−
(

a−
√
a2+4b
2

)n . (14)

Theorem 6 Both (Gn) and (Hn) are Cauchy se-
quences.
Proof. The identity

(Gn+1 −Gn)
2 −

(
b

GnGn−1

)2

(Gn −Gn−1)
2

=

(
a+

b

Gn
−Gn

)2

−
(
Gn − a
Gn

)2(
Gn −

b

Gn − a

)2

=

(
aGn + b−G2

n

)2 − (Gn (Gn − a)− b)2

G2
n

= 0

4
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implies that

|Gn+1 −Gn| =
(

b

GnGn−1

)
|Gn −Gn−1| ,

for n = 2, 3, 4, . . . . By rewriting the multiplicative con-
traction factor as

Kn =
b

GnGn−1
=
Gn − a
Gn

= 1− a2

aGn

and using the fact that a2 < aGn ≤ a2 + b, we see that

0 < Kn ≤
b

a2 + b
< 1.

Thus the difference between consecutive elements in
(Gn) becomes smaller and smaller. By an analogous
derivation it is possible to show that

|Hn+1 −Hn| = bHnHn+1 |Hn −Hn−1|

for n = 2, 3, 4, . . . , where the multiplicative factor is

kn = bHnHn+1 = 1− a2Hn+1

a
.

Therefore also 0 < kn ≤ b
a2+b < 1, since 1

a2+b ≤
Hn

a <
1
a2 . It thus follows that both sequences are Cauchy.

Corollary 7 Hence the sequences (Gn) and (Hn) con-
verge to the unique and finite limits

G∞ = lim
n→∞

Gn =
a2 +

√
a4 + 4a2b

2a
,

H∞ = lim
n→∞

Hn =

√
a4 + 4a2b− a2

2ab
=

1

G∞
.

Proof. The sequences are convergent since they are
Cauchy. The limit for (Gn) is found by letting n→∞
in equation (11) above, which yields

G∞ = a+
b

G∞
(15)

m

G2
∞ − aG∞ − b = 0⇔ G∞ =

a±
√
a2 + 4b

2
.

Obviously
√
a2 + 4b > |a| . Therefore, since all ele-

ments Gn are positive if a > 0 and negative if a < 0,
we conclude that the limit must be

G∞ = ±|a|+
√
a2 + 4b

2
=
a2 +

√
a4 + 4a2b

2a
,

where the positive sign is chosen if a > 0 and the neg-
ative sign is chosen if a < 0. The corresponding proof
for (Hn) follows analogously from equation (12).

The sequence (Gn) oscillates around G∞ with con-
secutive elements being above and below G∞, since if
aGn−1 < aG∞, we get that

aGn = a2 +
a2b

aGn−1
> a2 +

a2b

aG∞
= aG∞

and vice versa. The same is true for the sequence (Hn) ,

since Hn−1

a < H∞
a implies that

Hn

a
=

1

a2 + a2bHn−1

a

>
1

a2 + a2bH∞a
=
H∞
a
.

The rate of convergence to the corresponding limit
elements follows from the identities

|Gn −G∞| =
b

G∞Gn−1
|Gn−1 −G∞| , (16)

|Hn −H∞| = bHnH∞ |Hn−1 −H∞| ,

since

(Gn −G∞)
2 − b2

G2
∞G

2
n−1

(Gn−1 −G∞)
2

=

(
a+ b

Gn−1
−G∞

)2

G2
n−1 − b2

G2
∞

(Gn−1 −G∞)
2

G2
n−1

=
(aGn−1 + b−G∞Gn−1)

2 −
(

b
G∞

Gn−1 − b
)2

G2
n−1

=

(
aGn−1 + b−G∞Gn−1 − b

G∞
Gn−1 + b

)
Gn−1(

aGn−1 + b−G∞Gn−1 + b
G∞

Gn−1 − b
)

Gn−1

=

((
a−G∞ − b

G∞

)
Gn−1 + 2b

)(
a−G∞ + b

G∞

)
Gn−1

= 0,

where the last equality follows from (15).
Moreover, since Gn−1 converges to G∞, we have for

sufficiently large n that the constant of contraction is
approximately

b

G∞Gn−1
≈ b

G2
∞

=
4b(

|a|+
√
a2 + 4b

)2
<

4b

2a2 + 4b
=

1

1 + a2

2b

< 1.

A similar calculation shows that the corresponding re-
sult is also true for the sequence (Hn) , with the con-
stant of contraction again being

bHnH∞ ≈ bH2
∞ =

b

G2
∞
<

1

1 + a2

2b

< 1.

5
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Since consecutive elements of (Gn) oscillate around the
limit G∞, it follows that the subsequences with odd-
indexed and even-indexed elements of (Gn) must have
all elements either above or below the limit. Now

aG1 = a2 <
a2 +

√
a4 + 4a2b

2
= aG∞,

hence the elements of (aGn)n=1,3,5,... all lie below aG∞
and the elements of (aGn)n=2,4,6,... all lie above aG∞.
Similarly, all elements of (Hn/a)n=1,3,5,... lie below
H∞/a and all elements of (Hn/a)n=0,2,4,... lie above
H∞/a.

For this particular problem, we are only interested in
the odd-indexed subsequences Go

n = G2n−1 and Ho
n =

H2n−1. By using the recurrence formula twice, we can
find expressions for the elements of these subsequences.
Indeed,

Gn+1 = a+ b/Gn,

Gn+2 = a+ b/Gn+1,

yields that

Gn+2 = a+
b

a+ b
Gn

=

(
a2 + b

)
Gn + ab

aGn + b
, (17)

G1 = a.

Similarly, we find the corresponding recurrence equa-
tion for the odd-indexed subsequence of (Hn) to be

Hn+2 =
1

a+ b 1
a+bHn

=
a+ bHn

a2 + b+ abHn
, (18)

H1 = 0.

Alternatively, with use of the negative generalized Fi-
bonacci numbers (8) we might also include the first
negative indexed elements

G−1 =
f0

f−1
= 0,

H−1 =
f−2

f−1
= −a

b
,

as initial values for the recurrence equations.

Theorem 8 The odd-indexed and even-indexed subse-
quences of (Gn) and (Hn) are monotone.
Proof. Consider for instance the subsequence
(Gn)n=1,3,5,... . Then a2 ≤ aGn < aG∞, n = 1, 3, 5, . . . ,
which implies that

a2
(
G2

n − aGn − b
)

= aGn

(
aGn − a2

)
− a2b

< aG∞
(
aG∞ − a2

)
− a2b

= a2
(
G2
∞ − aG∞ − b

)
= 0.

Hence

aGn+2 − aGn = a

(
a2 + b

)
Gn + ab

aGn + b
− aGn

= −
a2
(
G2

n − aGn − b
)

GnGn+1
> 0,

which implies that the subsequence (aGn)n=1,3,5,... is
monotonically increasing. Similar arguments show that
also

(
Hn

a

)
n=1,3,5,...

is monotonically increasing.

4 A Special One-Dimensional LQR
Problem

In this section, we deal with the special case Φ2 = 1
for the LQR problem (1) in dimension r = 1. We thus
consider the optimal feedback control of the system

x (k + 1) = Φx (k) + Γu (k) , (19)

y (k) = ∆x (k) ,

subject to minimization of the functional

J =
1

2

N−1∑
m=0

Q (x (m))
2

+ P (u (m))
2
,

where Q ≥ 0 and P > 0.

Remark 9 The degenerate case Q = 0 gives the ex-
plicit solutions

R (N − k) =
PQ0Φ2k

P + Γ2Q0

k−1∑
i=0

Φ2i

=
PQ0

P + kΓ2Q0
,

L (N − k) =
Γ

PΦ
R (N − k) =

ΓQ0/Φ

P + kΓ2Q0

for k = 1, 2, . . . , N, where Q0 is taken from (6). Specif-
ically, we have that R (k) = 0 and L (k) = 0 for all
k when Q0 = 0. We therefore only consider the case
Q > 0 from hereon.

To ensure controllability of the system, we also re-
quire Γ 6= 0. Then the corresponding Riccati difference
equation (5) becomes

R (k) = Q+
Φ2PR (k + 1)

P + Γ2R (k + 1)
, (20)

k = N − 1, . . . , 1, 0,

R (N) = 0.

To begin with, we note that this implies that

R (N − 1) = Q.

6
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The feedback control gain (4) then becomes

L (k) =
Γ (R (k)−Q)

ΦP
=

ΦΓR (k + 1)

P + Γ2R (k + 1)
. (21)

Inverting this relation yields

R (k) =
PΦ

Γ
L (k) +Q,

hence

R (k + 1) =
PΦ

Γ
L (k + 1) +Q. (22)

Replacing R (k + 1) in (21) with (22) gives the corre-
sponding recurrence equation for the feedback gain as

L (k) =
ΓΦ
(
PΦ
Γ L (k + 1) +Q

)
P + Γ2

(
PΦ
Γ L (k + 1) +Q

)
=

ΓΦ + P
QL (k + 1) Φ2

Γ2 + P
Q + ΓP

QΦL (k + 1)
,

with the initial value

L (N) = Γ
R (N)−Q

ΦP
= − Q

ΦP
Γ.

If we divide L (k) with Φ, we get the equivalent recur-
rence equation

L (k)

Φ
=

Γ + P
QΦ2 L(k+1)

Φ

Γ2 + P
Q + ΓP

QΦ2 L(k+1)
Φ

, k = N − 1, . . . , 1, 0,

(23)
in the variable L (·) /Φ, with the initial value

L (N)

Φ
= − Q

PΦ2
Γ.

However, since R (N − 1) = Q, we can also use

L (N − 1)

Φ
= Γ

R (N − 1)−Q
Φ2P

= 0

as initial value. Moreover, by multiplying (20) with
Γ/Q, we get an equivalent difference equation in the
variable Γ

QR (·) by

Γ

Q
R (k) = Γ +

P Γ
QΦ2R (k + 1)

P + Γ2R (k + 1)

=
ΓP

Q +
(

Γ2 + P
QΦ2

)
Γ
QR (k + 1)

P
Q + Γ Γ

QR (k + 1)
,(24)

Γ

Q
R (N) = 0.

We can here alternatively use

Γ

Q
R (N − 1) = Γ

as initial value. This leads us to the theorem:

Theorem 10 Assume that Φ2 = 1 and let fn be the
generalized Fibonacci numbers generated by

fn = Γfn−1 +
P

Q
fn−2, (25)

f0 = 0, f1 = 1.

Then the solution R (N − k) , k = 1, 2, . . . , N, of the
Riccati equation (20) is given by

R (N − k) =
Q

Γ
G2k−1 =

Q

Γ

f2k

f2k−1
, (26)

and the feedback gain L (N − k) is given by

L (N − k) = ΦH2k−1 = Φ
f2(k−1)

f2k−1
. (27)

Proof. Consider the definition (7) with

a = Γ,

b =
P

Q
.

Then the recurrence equation (17) for the odd-indexed
subsequence of (Gn) becomes

Gn+2 =

(
Γ2 + P

Q

)
Gn + ΓP

Q

ΓGn + P
Q

, n = −1, 1, 3, 5, . . . ,

G−1 = 0.

If we do not want to use negative-indexed values, we
can replace the initial value with G1 = a = Γ. By mak-
ing the change of variable

n = 2 (N − k)− 1,

we see that this is exactly the same recurrence equation
with same initial value as equation (24) for Γ

QR (k) ,

when Φ2 = 1. By uniqueness of the solution of this
kind of recurrence equations (function iteration), we
find that

Γ

Q
R (k) = G2(N−k)−1 =

f2(N−k)

f2(N−k)−1
,

that is

R (N − k) =
Q

Γ
G2k−1 =

Q

Γ

f2k

f2k−1
.

Similarly, we get that the recurrence equation (18) for
the odd-indexed subsequence of (Hn) becomes

Hn+2 =
Γ + P

QHn

Γ2 + P
Q + ΓP

QHn

,

H−1 = −Q
P

Γ.

7
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If we do not want to use negative-indexed values, we
can replace the initial value with H1 = 0. Using Φ2 =
1, we note that this is exactly the same recurrence
equation with same initial value as equation (23) for
L (k) /Φ, where the relationship between indices n and
k again is

n = 2 (N − k)− 1.

Hence we find that

L (k)

Φ
= H2(N−k)−1 =

f2(N−k−1)

f2(N−k)−1
,

which implies that

L (N − k) = ΦH2k−1 = Φ
f2(k−1)

f2k−1
.

Knowing the feedback gain, we can now compute the
state and input sequences. The results are contained
in the following theorem:

Theorem 11 Given the initial value x (0) , we can
express the state and input values x (k) and u (k) ,
k = 0, 1, 2, . . . , N − 1, in the system (19) as

x (k) =
f2(N−k)−1

f2N−1

(
Φ
P

Q

)k

x (0) , (28)

u (k) = −Φ
f2(N−k−1)

f2N−1

(
Φ
P

Q

)k

x (0) . (29)

Proof. If the formula for x (k) is true, it easily follows
from (27) that

u (k) = −L (k)x (k)

= −Φ
f2(N−k−1)

f2(N−k)−1

f2(N−k)−1

f2N−1

(
Φ
P

Q

)k

x (0)

= −Φ
f2(N−k−1)

f2N−1

(
Φ
P

Q

)k

x (0) .

First, we note that the formula for x (k) is trivially true
when k = 0. Now assume that the formula is true for
k = p, i.e.

x (p) =
f2(N−p)−1

f2N−1

(
Φ
P

Q

)p

x (0) .

Then

x (p+ 1) = Φx (p) + Γu (p) = (Φ− ΓL (p))x (p)

=

(
Φ− ΓΦ

f2(N−p−1)

f2(N−p)−1

)
x (p)

= Φ
f2(N−p)−1 − Γf2(N−p−1)

f2(N−p)−1

f2(N−p)−1

f2N−1

(
Φ
P

Q

)p

x (0)

=
f2(N−(p+1))−1

f2N−1

(
Φ
P

Q

)p+1

x (0) ,

where the last equality follows from the definition of
generalized Fibonacci numbers

fm − Γfm−1 =
P

Q
fm−2

with m = 2 (N − p) − 1 (odd number). The induction
principle completes the proof.

Moreover, we have the following result for the sub-
sequent values of the penalty functional:

Theorem 12 Let us define the value Jk at timestep k
of the penalty functional by

Jk =
1

2

N−1∑
m=k

Q (x (m))
2

+ P (u (m))
2
. (30)

Then the subsequent values Jk, k = N−1, N−2, . . . , 0,
are given by

Jk =
1

2
R (k) (x (k))

2
=
Q (x (k))

2

2Γ

f2(N−k)

f2(N−k)−1

=
Q

2Γ

(
Φ
P

Q

)2k f2(N−k)f2(N−k)−1

(f2N−1)
2 (x (0))

2
.(31)

Proof. From (21) we have that

ΦPL (k) + ΓQ− ΓR (k) = 0.

Moreover, inversion of (20) yields that

R (k + 1) =
P (R (k)−Q)

Φ2P +QΓ2 − Γ2R (k)
.

When m = N − 1, we trivially have that

JN−1 =
1

2
Q (x (N − 1))

2
=

1

2
R (N − 1) (x (N − 1))

2
,

since R (N − 1) = Q and u (N − 1) =
−L (N − 1)x (N − 1) = 0. Let us now assume
that (31) holds for k = p+ 1, i.e.

Jp+1 =
1

2
R (p+ 1) (x (p+ 1))

2

=
1

2
R (p+ 1) (Φx (p) + Γu (p))

2
.

8
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Then it follows that

Jp = Jp+1 +
1

2

(
Q (x (p))

2
+ P (u (p))

2
)

=
1

2

[
R (p+ 1) (Φx (p) + Γu (p))

2
+Q (x (p))

2

+ P (u (p))
2
]

=
1

2

[
P (R (p)−Q) (Φ− ΓL (p))

2

Φ2P +QΓ2 − Γ2R (p)
+Q

+P (L (p))
2
]

(x (p))
2

=
1

2

1

Φ2P +QΓ2 − Γ2R (p)
[(ΦPL (p) + ΓQ

−ΓR (p))
2

+R (p)
(
Φ2P +QΓ2 − Γ2R (p)

)]
(x (p))

2

=
1

2
R (p) (x (p))

2
.

Using the induction principle concludes the first part of
(31). Secondly, using (26) and (28), we find that the
consecutive values Jk of the penalty functional can be
expressed as

Jk =
1

2
R (k) (x (k))

2
=
Q (x (k))

2

2Γ

f2(N−k)

f2(N−k)−1

=
Q

2Γ

(
Φ
P

Q

)2k f2(N−k)f2(N−k)−1

(f2N−1)
2 (x (0))

2
.

Remark 13 Let Φ2 = 1. By first using definition (30)
together with expressions (28) and (29) to compute J0

and then comparing with the result

J = J0 =
Q

2Γ

f2N

f2N−1
(x (0))

2

from formula (31), one obtains the identity

M∑
m=0

(
Q

P

)m

f2
m =

(
Q

P

)M
fMfM+1

Γ

(for M = 2N − 1 odd, but it is also true for M even),
which in the case Γ = P

Q = 1 simplifies to the well
known Fibonacci identity

M∑
m=0

F 2
m = FMFM+1.

Moreover, by using (34) we see that

lim
N→∞

J = lim
N→∞

1

2

N−1∑
m=0

Q (x (m))
2

+ P (u (m))
2

=
Q

2Γ
G∞ (x (0))

2
.

By using the explicit Binet type formulae (13) and
(14), we may also conclude that

R (N − k) =

Q

Γ

(
Γ+

√
Γ2+4 P

Q

2

)2k

−

(
Γ−

√
Γ2+4 P

Q

2

)2k

(
Γ+

√
Γ2+4 P

Q

2

)2k−1

−

(
Γ−

√
Γ2+4 P

Q

2

)2k−1
, (32)

L (N − k) =

Φ

(
Γ+

√
Γ2+4 P

Q

2

)2(k−1)

−

(
Γ−

√
Γ2+4 P

Q

2

)2(k−1)

(
Γ+

√
Γ2+4 P

Q

2

)2k−1

−

(
Γ−

√
Γ2+4 P

Q

2

)2k−1
. (33)

Corresponding Binet type formulae for x (k) , u (k) and
Jk may obviously be found in an analogous way.

Now consider the case Γ > 0. It is obvious that
(R (N − k))k is monotonically increasing (as k in-
creases from k = 0 to k = N), since the corresponding
generalized Fibonacci ratios are monotonically increas-
ing by Theorem 8. More specific, in the case with in-
finite horizon (i.e. N →∞) , we have that R∞ (k) and
L∞ (k) converge to the limit values

R∞ (0) = lim
k→0

R∞ (k) =
Q

Γ
G∞ =

Q

Γ
ϕ, (34)

L∞ (0) = lim
k→0

L∞ (k) = ΦH∞ = Φ
1

ϕ
,

where subscript ∞ denotes infinite horizon and

ϕ = G∞ =
Γ +

√
Γ2 + 4P

Q

2
. (35)

The case Γ < 0 follows analogously with the corre-
sponding sign corrections.

Remark 14 The more general cost functional (6)
leads to the same conclusions as above, however with
the initial conditions f0 and f1 of the generalized Fi-
bonacci recurrence equation (25) replaced with

f0 =
Γ

P
Q0, (36)

f1 = 1 +
Γ2

P
Q0,

due to the change of initial value R (N) = Q0. In this
case we also have to redefine negative-indexed general-
ized Fibonacci numbers accordingly, since f0 6= 0. Thus
we obtain

f−1 =
Q

P
(f1 − Γf0) =

Q

P
,

f−2 =

(
Q

P

)2((
Γ2 +

P

Q

)
f0 − Γf1

)
=

ΓQ

P 2
(Q0 −Q) .

9
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5 The General One-Dimensional
Case

Let us now consider the case without restrictions on Φ,
i.e. the optimal feedback control of the system

x (k + 1) = Φx (k) + Γu (k) ,

y (k) = ∆x (k) ,

subject to minimization of the functional

J =
1

2

N−1∑
m=0

Q (x (m))
2

+ P (u (m))
2
,

where Q ≥ 0 and P > 0. Again, we only consider
the case Q > 0, see Remark 9. We also discard the
degenerate case Φ = 0, since it results in zero feedback
by (21). Furthermore, to ensure controllability of the
system we require Γ 6= 0. Since in general Φ2 6= 1, it
is impossible to use our previous definition (25) of a
generalized Fibonacci sequence to solve the recurrence
equations

L (k)

Φ
=

Γ + P
QΦ2 L(k+1)

Φ

Γ2 + P
Q + ΓP

QΦ2 L(k+1)
Φ

, (37)

k = N − 1, . . . , 1, 0,

L (N)

Φ
= − Q

PΦ2
Γ,

and

Γ

Q
R (k) =

ΓP
Q +

(
Γ2 + P

QΦ2
)

Γ
QR (k + 1)

P
Q + Γ Γ

QR (k + 1)
,(38)

Γ

Q
R (N) = 0.

Instead, we look for a sequence fn defined by the re-
currence equation

fn = anfn−1 + bnfn−2,

f0 = 0, f1 = 1,

where we allow the coefficients an and bn to vary with
n. Then

f−1 =
1

b1
, f−2 = − a0

b0b1
.

Moreover, we define

Gm =
fm+1

fm
,

Hm =
fm−1

fm
,

which implies that

Gm = am+1 +
bm+1

Gm−1
, (39)

Gm+1 = am+2 +
bm+2

Gm
.

Hence

Gm+1 = am+2 +
bm+2

am+1 + bm+1

Gm−1

=
(am+1am+2 + bm+2)Gm−1 + am+2bm+1

am+1Gm−1 + bm+1
, (40)

G−1 = 0,

and similarly

Hm+1 =
am + bmHm−1

am+1am + bm+1 + am+1bmHm−1
,(41)

H−1 = −a0

b0
.

Thus we see that if we make the choice

an = Γ, all n,

bn =

{
P
QΦ2, n even,
P
Q , n odd,

(42)

the recurrence equation (38) in the variable Γ
QR (·) co-

incides with (40) and the recurrence equation (37) in
the variable L (·) /Φ coincides with (41), with the rela-
tion between indices m and k being

m = 2 (N − k)− 1.

This means that we can identify

Γ

Q
R (k) = G2(N−k)−1,

L (k)

Φ
= H2(N−k)−1.

The sequences (Gn) = (G−1, G0, G1, . . .) and (Hn) =
(H−1, H0, H1, . . .) defined above can be split in the sub-
sequences

Ge = (Ge
0, G

e
1, G

e
2, . . .) , He = (He

0 , H
e
1 , H

e
2 , . . .) ,

Go = (Go
0, G

o
1, G

o
2, . . .) , Ho = (Ho

0 , H
o
1 , H

o
2 , . . .) ,

where

Ge
m = G2m = f2m+1

f2m
, He

m = H2m = f2m−1

f2m
,

Go
m = G2m−1 = f2m

f2m−1
, Ho

m = H2m−1 =
f2(m−1)

f2m−1
,

10
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for m = 0, 1, 2, . . . .
It is worth noting that also in this case are Gn and

Hn well defined for n = 1, 2, 3, . . . , independent of Q0,
since the corresponding bounds for the elements are

Γ2 ≤ ΓGn ≤ Γ2 +
P

Q
max

(
1,Φ2

)
,

1

Γ2 + P
Q max (1,Φ2)

≤ Hn

Γ
≤ 1

Γ2
.

This result is summarized in the main theorem of this
article:

Theorem 15 Assume that µn is periodically varying
as

µn =

{
Φ2, n even,
1, n odd.

Let fn be the generalized Fibonacci numbers generated
by

fn = Γfn−1 +
P

Q
µnfn−2, (43)

f0 = 0, f1 = 1,

and define

Gn =
fn+1

fn
,

Hn =
fn−1

fn
.

Then the solution R (N − k) , k = 1, 2, . . . , N, of the
Riccati equation (20) is given by

R (N − k) =
Q

Γ
G2k−1 =

Q

Γ
Go

k =
Q

Γ

f2k

f2k−1
.

and the feedback gain L (N − k) is given by

L (N − k) = ΦH2k−1 = ΦHo
k = Φ

f2(k−1)

f2k−1
.

Moreover, corresponding theorems (Theorem 11 and
Theorem 12) for the state and input sequences and the
value of the penalty functional hold true also in this
case, since no other property from this more general
definition have been used in their corresponding proofs.

Remark 16 In fact, if we know that

R (N − k) =
Q

Γ

f2k

f2k−1
,

it follows from (43) that

R (N − k) =
Q

Γ

Γf2k−1 + P
QΦ2f2(k−1)

f2k−1
,

which inserted in (21) yields

L (N − k) =
Γ (R (N − k)−Q)

ΦP

= Φ
f2(k−1)

f2k−1
= ΦH2k−1.

By using the definition (42) in (39) and letting m→
∞, we see that

Ge
m → Ge

∞,

Go
m → Go

∞,

where

Ge
∞ = Γ +

P
Q

Go
∞
,

Go
∞ = Γ +

P
QΦ2

Ge
∞
,

that is,

Ge
∞ =

1

2Γ

(
Γ2 +

P

Q

(
1− Φ2

)
+

√(
Γ2 +

P

Q
(1− Φ2)

)2

+ 4Γ2Φ2
P

Q

 ,

Go
∞ =

1

2Γ

(
Γ2 +

P

Q

(
Φ2 − 1

)
+

√(
Γ2 +

P

Q
(1− Φ2)

)2

+ 4Γ2Φ2
P

Q

 .

Similarly, we get that

He
m → He

∞ =
1

Go
∞
,

Ho
m → Ho

∞ =
1

Ge
∞
.

Remark 17 Note that the limits Ge
∞ and Go

∞ are in-
dependent of the initial values f0 and f1.

In order to find explicit Binet type expressions for
L (k) and R (k) , we need to be able to express the
generalized Fibonacci numbers by some kind of recur-
rence equation with constant coefficents. First, we note
that both (Go

n) and (Ho
n) have even-indexed gener-

alized Fibonacci numbers in the numerator and odd-
indexed generalized Fibonacci numbers in the denom-
inator. We therefore try to find two recurrence equa-
tions with constant coefficients for every second gener-
alized Fibonacci number, one for the odd-indexed sub-
sequence and one for the even-indexed subsequence.

11
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Indeed, we have

fn+2 = Γfn+1 +
P

Q
fn

= Γ

(
Γfn +

P

Q
Φ2fn−1

)
+
P

Q
fn (44)

=

(
Γ2 +

P

Q

)
fn +

P

Q
Φ2

(
fn −

P

Q
fn−2

)
=

(
Γ2 +

P

Q

(
Φ2 + 1

))
fn −

(
P

Q

)2

Φ2fn−2,

for n odd and

fn+2 = Γfn+1 +
P

Q
Φ2fn

= Γ

(
Γfn +

P

Q
fn−1

)
+
P

Q
Φ2fn (45)

=

(
Γ2 +

P

Q
Φ2

)
fn +

P

Q

(
fn −

P

Q
Φ2fn−2

)
=

(
Γ2 +

P

Q

(
Φ2 + 1

))
fn −

(
P

Q

)2

Φ2fn−2,

for n even, i.e. the same recurrence relation. The cor-
responding initial values are

fo0 = f−1 =
Q

P
, (46)

fo1 = f1 = 1,

for the odd-indexed subsequence fo = (fon)n=0,1,2,... =
(f−1, f1, f3, . . .) and

fe0 = f−2 = − Q2Γ

P 2Φ2
, (47)

fe1 = f0 = 0,

for the even-indexed subsequence fe = (fen)n=0,1,2,... =
(f−2, f0, f2, . . .) .

Now consider the sequence (gn) = (g−1, g0, g1, g2, ...)
generated by

gn+1 = Agn +Bgn−1,

g−1 =
Q

P
,

g0 =
1− Φ

A
.

Then

gn+2 = A (Agn +Bgn−1) +Bgn

=
(
A2 +B

)
gn +B (gn −Bgn−2)

=
(
A2 + 2B

)
gn −B2gn−2,

g−1 =
Q

P
,

g1 = 1− Φ +B
Q

P
.

If we compare this with recurrence equation (44) and
its corresponding initial values (46), we see that the
odd-indexed subsequence go = (g−1, g1, g3, . . .) coin-
cides with fo = (f−1, f1, f3, . . .) if we make the identi-
fication

A =

√
Γ4 + Γ2 P

Q (Φ− 1)
2

Γ
,

B =
P

Q
Φ.

Thus we can generate the odd-indexed subsequence fo

by taking every second element g−1, g1, g3, . . . gener-
ated by the recurrence equation

gn+1 =

√
Γ4 + Γ2 P

Q (Φ− 1)
2

Γ
gn +

P

Q
Φgn−1,

g−1 =
Q

P
,

g0 =
(1− Φ) Γ√

Γ4 + Γ2 P
Q (Φ− 1)

2
.

By following the same idea as in the proof of the Binet
formula (9), we see that we can write

gk =
(ϕ1 + Φϕ2)ϕk

1 − (ϕ2 + Φϕ1)ϕk
2

ϕ2
1 − ϕ2

2

,

where

ϕ1 =
A+
√
A2 + 4B

2

=

√
Γ4 + Γ2 P

Q (Φ− 1)
2

+
√

Γ4 + Γ2 P
Q (Φ + 1)

2

2Γ
,

ϕ2 =
A−
√
A2 + 4B

2

=

√
Γ4 + Γ2 P

Q (Φ− 1)
2 −

√
Γ4 + Γ2 P

Q (Φ + 1)
2

2Γ
,

are the roots of the corresponding characteristic equa-
tion

ϕ2 =

√
Γ4 + Γ2 P

Q (Φ− 1)
2

Γ
ϕ+

P

Q
Φ.

Hence we can conclude that

fok = g2k−1 =
(ϕ1 + Φϕ2)ϕ2k−1

1 − (ϕ2 + Φϕ1)ϕ2k−1
2

ϕ2
1 − ϕ2

2

,

k = 0, 1, 2, . . . .

Similarly, we can generate the even-indexed sub-
sequence (fen) by taking every second element

12
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(h−2, h0, h2, . . .) generated by the recurrence equation

hn+1 =

√
Γ4 + Γ2 P

Q (Φ− 1)
2

Γ
hn +

P

Q
Φhn−1,

h−2 = − Q2Γ

P 2Φ2
,

h−1 =
QΓ2

PΦ
√

Γ4 + Γ2 P
Q (Φ− 1)

2
.

In this case, the corresponding Binet type formula be-
comes

hk = Γ
ϕk

1 − ϕk
2

ϕ2
1 − ϕ2

2

,

i.e. we can conclude that

fek = h2(k−1) = Γ
ϕ

2(k−1)
1 − ϕ2(k−1)

2

ϕ2
1 − ϕ2

2

, k = 0, 1, 2, . . . .

Thus we have found explicit formulae for R (N − k)
and L (N − k) given by

R (N − k) =
Q

Γ
Go

k =
Q

Γ

fek+1

fok

= Q
ϕ2k

1 − ϕ2k
2

(ϕ1 + Φϕ2)ϕ2k−1
1 − (ϕ2 + Φϕ1)ϕ2k−1

2

, (48)

L (N − k) = ΦHo
k = Φ

fek
fok

= ΦΓ
ϕ

2(k−1)
1 − ϕ2(k−1)

2

(ϕ1 + Φϕ2)ϕ2k−1
1 − (ϕ2 + Φϕ1)ϕ2k−1

2

,(49)

where

ϕ1 =

√
Γ4 + Γ2 P

Q (Φ− 1)
2

+
√

Γ4 + Γ2 P
Q (Φ + 1)

2

2Γ
,

ϕ2 =

√
Γ4 + Γ2 P

Q (Φ− 1)
2 −

√
Γ4 + Γ2 P

Q (Φ + 1)
2

2Γ
.

Remark 18 Note that all formulae in the special case
Φ2 = 1 coincide with those given in the previous sec-
tion.

Remark 19 Another way to show this Binet type for-
mula is to transform the Riccati difference equation
(equivalent to eq. (38)),

R (N − k − 1) =
PQ+

(
QΓ2 + PΦ2

)
R (N − k)

P + Γ2R (N − k)
,

k = 0, 1, . . . , N − 1,

by the change of variables

R (N − k) =
QΓ2 + PΦ2 + P

Γ2
wk −

P

Γ2
.

This yields the equivalent one-parameter difference
equation

wk+1 = 1− ρ

wk
,

where

ρ =

(
PΦ

QΓ2 + PΦ2 + P

)2

.

A second change of variables

wk =
yk+1

yk

linearizes this equation to the resulting linear second
order difference equation in yn

yk+2 − yk+1 + ρyk = 0,

which easily can be solved. For details, see e.g. the
books Camouzis and Ladas (2008), Elaydi (2005) and
Kulenović and Ladas (2002).

Remark 20 To handle the more general cost func-
tional (6), one needs to replace the initial values with

f0 =
Γ

P
Q0,

f1 = 1 +
Γ2

P
Q0,

or equivalently,

f−1 =
Q

P
,

f−2 =
ΓQ

Φ2P 2
(Q0 −Q) .

6 Some Numerical Examples

We will illustrate the use of generalized Fibonacci se-
quences in four different examples.

Example 21 Let N = 6. We consider the process

ξ(k + 1) = ξ(k) + u(k), k = 0, 1, 2, . . . , N,

under the maximization of the functional

J̃ =

N−1∑
m=0

10ξ(m)− 1

2
(ξ(m))

2 − 1

2
(u(m))

2
.

Moreover, we assume that we start with a value of
ξ(0) = 9. First, we see that the change of variable
x (k) = ξ (k)− 10 transforms the problem to the equiv-
alent LQR problem

x(k + 1) = x(k) + u(k),

13



Modeling, Identification and Control

k R (k) L (k) x (k) u (k) ξ (k) Jk
5 1 0 − 1

89 ≈ −0.0112 0 9.989 1
2 ·

1
892

4 3
2 = 1.5000 1

2 = 0.5000 − 2
89 ≈ −0.0225 1

89 ≈ 0.0112 9.978 1
2 ·

2·3
892

3 8
5 = 1.6000 3

5 = 0.6000 − 5
89 ≈ −0.0562 3

89 ≈ 0.0337 9.944 1
2 ·

5·8
892

2 21
13 ≈ 1.6154 8

13 ≈ 0.6154 − 13
89 ≈ −0.1461 8

89 ≈ 0.0899 9.854 1
2 ·

13·21
892

1 55
34 ≈ 1.6176 21

34 ≈ 0.6176 − 34
89 ≈ −0.3820 21

89 ≈ 0.2360 9.618 1
2 ·

34·55
892

0 144
89 ≈ 1.6180 55

89 ≈ 0.6180 −1 55
89 ≈ 0.6180 9.000 1

2 ·
144
89

Table 1: Numerical values corresponding to Example 21.

n 0 1 2 3 4 5 6 7 8 9 10 11 12
fn 0 1 1 2 3 5 8 13 21 34 55 89 144

Table 2: Fibonacci numbers corresponding to Example 21.

with initial value x (0) = −1, subject to minimization
of the functional

J = J0 =
1

2

N−1∑
m=0

(x (m))
2

+ (u(m))
2

= 50− J̃ .

The change of variable implies that the optimal path
ξ (k) is offset by 10, i.e. ξ (k) = x (k) + 10. Here
P = Q = 1, Φ = 1 and Γ = 1, thus by using expressions
(20), (21), (19), (2) and (30), we can generate Table
1. To see the relation with the sequence of Fibonacci
numbers Fn, we need to consider the consecutive ratios
of the numbers Fn generated by the recurrence formula
Fn = Fn−1 + Fn−2. In this case, we get the familiar
sequence in Table 2. Clearly, the values of x (k) , u (k)
and Jk all coincide with the predicted values from (28),
(29) and (31). Moreover, we generate the sequences

of consecutive ratios Gn = Fn+1

Fn
and Hn = Fn−1

Fn

in Table 3. As shown theoretically before, the odd-
indexed elements of Gn (bold face) coincide with R (k)
and the odd-indexed elements of Hn (bold face) coin-
cide with L (k), where n = 2 (N − k) − 1 = 11 − 2k,
k = 0, 1, 2, 3, 4, 5.

Example 22 Let N = 5. We consider the process

x(k + 1) = −x(k) + 5u(k), k = 0, 1, 2, . . . , N,

with initial value x (0) = 1, subject to minimization of
the functional

J = J0 =
5

4

N−1∑
m=0

(x (m))
2

+ 6 (u(m))
2
.

Here P = 15, Q = 5
2 , Φ = −1 and Γ = 5. Thus by using

expressions (20), (21), (19), (2) and (30), we can gen-
erate Table 4. In this case, we need to find the general-
ized Fibonacci numbers fn generated by the recurrence
formula fn = Γfn−1 + P

Qfn−2 = 5fn−1 + 6fn−2. This
gives the sequence in Table 5, resulting in the sequences
of consecutive ratios Gn = fn+1

fn
and Hn = fn−1

fn
given

by Table 6. Again, we note that the odd-indexed el-
ements of Gn multiplied with Q

Γ = 1
2 (bold face) co-

incide with R (k) and the odd-indexed elements of Hn

(bold face) multiplied with Φ = −1 coincide with L (k),
where n = 2 (N − k)− 1 = 9− 2k, k = 0, 1, 2, 3, 4. The
characteristic equation is in this case

ϕ2 = Γϕ+
P

Q
= 5ϕ+ 6,

with solutions

ϕ1 = 6, ϕ2 = −1.

Thus formulae (32) and (33) give the explicit expres-

n 1 2 3 4 5 6 7 8 9 10 11

Gn 1 2 3
2

5
3

8
5

13
8

21
13

34
21

55
34

89
55

144
89

Hn 0 1 1
2

2
3

3
5

5
8

8
13

13
21

21
34

34
55

55
89

Table 3: Ratios of consecutive numbers from Table 2.
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k R (k) Q
ΓG∞ −R (k) L (k) x (k) u (k) Jk

4 5
2 5.0 · 10−1 0 1296

1439671 ≈ 0.0009 0 1
2 ·

5·68

2·14396712

3 185
62 1.6 · 10−2 − 5

31 − 6696
1439671 ≈ −0.0047 − 1080

1439671 ≈ −0.0008 1
2 ·

31·185·66

2·14396712

2 6665
2222 4.5 · 10−4 − 185

1111
39996

1439671 ≈ 0.0278 6660
1439671 ≈ 0.0046 1

2 ·
1111·6665·64

2·14396712

1 239945
79982 1.3 · 10−5 − 6665

39991 − 239946
1439671 ≈ − 0.1667 − 39990

1439671 ≈ −0.0278 1
2 ·

39991·239945·62

2·14396712

0 8638025
2879342 3.5 · 10−7 − 239945

1439671 1 239945
1439671 ≈ 0.1667 1

2
8638025

2·1439671

Table 4: Numerical values corresponding to Example 22.

n 0 1 2 3 4 5 6 7 8 9 10
fn 0 1 5 31 185 1111 6665 39991 239945 1439671 8638025

Table 5: Generalized Fibonacci numbers corresponding to Example 22.

sions

R (N − k) =
Q

Γ

ϕ2k
1 − ϕ2k

2

ϕ2k−1
1 − ϕ2k−1

2

=
1

2

62k − (−1)
2k

62k−1 − (−1)
2k−1

=
36k − 1
36k

3 + 2
,

L (N − k) = Φ
ϕ

2(k−1)
1 − ϕ2(k−1)

2

ϕ2k−1
1 − ϕ2k−1

2

= −62(k−1) − (−1)
2(k−1)

62k−1 − (−1)
2k−1

= − 36k−1 − 1

6 · 36k−1 + 1
,

yielding for instance

R (1) = R (5− 4) =
364 − 1
364

3 + 1
=

1679615

559874
=

239945

79982
,

L (2) = L (5− 3) = − 362 − 1

6 · 362 + 1
= −1295

7777
= − 185

1111
.

Moreover, if we denote

G∞ =
Γ +

√
Γ2 + 4P

Q

2
=

5 +
√

52 + 4 · 6
2

= 6,

we note that R (k) is getting closer and closer to
Q
ΓG∞ = 3 and that L (k) is getting closer and closer to
Φ 1

G∞
= − 1

6 as k decreases. We also see that the error

Q
ΓG∞ −R (k) decreases approximately

1(
(P

Q )
G2
∞

)2 = 62 = 36

times for every k (decreasing), as predicted by formula
(16) taken two times (only odd-indexed Gn in R (k)).

Example 23 Let N = 4. We consider the process

x(k + 1) = x(k)− 5u(k), k = 0, 1, 2, . . . , N,

with initial value x (0) = 3, subject to minimization of
the functional

J = J0 = 3 (x (N))
2

+
5

4

N−1∑
m=0

(x (m))
2

+ 6 (u(m))
2
.

Here Q0 = 6, P = 15, Q = 5
2 , Φ = 1 and Γ = −5.

Thus by using expressions (20), (21), (19), (2) and
(30) with R (N) = Q0, we can generate Table 7. In this
case, we need to find the generalized Fibonacci numbers
fn generated by the recurrence formula fn = Γfn−1 +
P
Qfn−2 = −5fn−1 + 6fn−2. Here we need to replace the
initial values f0 and f1 by

f0 =
Γ

P
Q0 = −2,

f1 = 1 +
Γ2

P
Q0 = 11.

n 1 2 3 4 5 6 7 8 9

Gn 5 31
5

185
31

1111
185

6665
1111

39991
6665

239945
39991

1439671
239945

8638025
1439671

Q
ΓGn

5
2

31
10

185
62

1111
370

6665
2222

39991
13330

239945
79982

1439671
479890

8638025
2879342

Hn 0 1
5

5
31

31
185

185
1111

1111
6665

6665
39991

39991
239945

239945
1439671

Table 6: Ratios of consecutive numbers from Table 5.
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k R (k) L (k) x (k) u (k)
4 6 − 7

6 ≈ −1.1667 648
519881 ≈ 0.00124 756

519881 ≈ 0.00145

3 67
22 ≈ 3.045 − 2

11 ≈ −0.18182 7128
519881 ≈ 0.01371 1296

519881 ≈ 0.00249

2 2407
802 ≈ 3. 001 − 67

401 ≈ −0.16708 43308
519881 ≈ 0.08330 7236

519881 ≈ 0.01392

1 86647
28882 ≈ 3.000 − 2407

14441 ≈ −0.16668 259938
519881 ≈ 0.50000 43326

519881 ≈ 0.08334

0 3119287
1039762 ≈ 3.000 − 86647

519881 ≈ −0.16667 3 259941
519881 ≈ 0.50000

Table 7: Numerical values corresponding to Example 23.

Moreover, the negative indexed numbers f−1 and f−2

become

f−1 =
Q

P
=

1

6
,

f−2 =
ΓQ

P 2
(Q0 −Q) = − 7

36
.

This gives the sequence in Table 8, resulting in the se-
quences of consecutive ratios Gn = fn+1

fn
and Hn =

fn−1

fn
given by Table 9. Again, we note that the odd-

indexed elements of Gn multiplied with Q
Γ = − 1

2 (bold
face) coincide with R (k) and the odd-indexed elements
of Hn (bold face) multiplied with Φ = 1 coincide with
L (k), where n = 2 (N − k)−1 = 7−2k, k = 0, 1, 2, 3, 4.
If we compare with Example 22, we see that also in this
case will R (k) come closer and closer to

Q

Γ
G∞ = Q

Γ2 +
√

Γ4 + 4Γ2 P
Q

2
= 3,

independent of the initial value Q0 (and thus also in-
dependent of f0 and f1).

Example 24 Let N = 4. We consider the process

x(k + 1) = 3x(k) + 5u(k), k = 0, 1, 2, . . . , N,

with initial value x (0) = 1, subject to minimization of
the functional

J = J0 =
5

4

N−1∑
m=0

(x (m))
2

+ 6 (u(m))
2
.

Here P = 15, Q = 5
2 , Φ = 3 and Γ = 5. Thus by

using expressions (20), (21), (19), (2) and (30), we
can generate Table 10. In this case, we need to find
the generalized Fibonacci numbers fn generated by the
recurrence formula fn = Γfn−1 + P

Qµnfn−2 = 5fn−1 +
6µnfn−2, where

µn =

{
Φ2, n even,

1, n odd,
= 1 + 4 · (1 + (−1)

n
) .

This gives us the sequence in Table 11, resulting in
the sequences of consecutive ratios Gn = fn+1

fn
and

Hn = fn−1

fn
given by Table 12. As before, we note that

the odd-indexed elements of Gn (bold face) multiplied
with Q

Γ = 1
2 coincide with R (k) and the odd-indexed

elements of Hn multiplied with Φ = 3 (bold face) co-
incide with L (k), where n = 2 (N − k) − 1 = 7 − 2k,
k = 0, 1, 2, 3.

Another method to find Gn and Hn (using recur-
rence equations with constant coefficients) is to take
every second element g−1, g1, g3, ... generated by the re-
currence equation

gn+1 =

√
Γ4 + Γ2 P

Q (Φ− 1)
2

Γ
gn +

P

Q
Φgn−1

= 7gn + 18gn−1

g−1 =
Q

P
=

1

6
,

g0 =
(1− Φ) Γ√

Γ4 + Γ2 P
Q (Φ− 1)

2
= −2

7
,

and every second element (h−2, h0, h2, ...) generated by
the recurrence equation

hn+1 =

√
Γ4 + Γ2 P

Q (Φ− 1)
2

Γ
hn +

P

Q
Φhn−1

= 7hn + 18hn−1,

h−2 = − Q2Γ

P 2Φ2
= − 5

324
,

h−1 =
QΓ2

PΦ
√

Γ4 + Γ2 P
Q (Φ− 1)

2
=

5

126
.

Then the odd-indexed elements of (gn) (bold face) co-
incide with the odd-indexed elements of (fn) and the
even-indexed elements of (hn) (bold face) coincide with
the even-indexed elements of (fn) , see Table 13. These
two subsequences form the basis of the Binet type for-
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n −2 −1 0 1 2 3 4 5 6 7 8
fn − 7

36
1
6 −2 11 −67 401 −2407 14441 −86647 519881 −3119287

Table 8: Generalized Fibonacci numbers corresponding to Example 23.

n −1 0 1 2 3 4 5 6 7

Gn −12 − 11
2 − 67

11 − 401
67 − 2407

401 − 14441
2407 − 86647

14441 − 519881
86647 − 3119287

519881

Q
ΓGn 6 11

4
67
22

401
134

2407
802

14441
4814

86647
28882

519881
173294

3119287
1039762

Hn −7
6 − 1

6 − 2
11 − 11

67 − 67
401 − 401

2407 − 2407
14441 − 14441

86647 − 86647
519881

Table 9: Ratios of consecutive numbers from Table 8.

mulae (48) and (49), which in this case become

R (N − k)

= Q
ϕ2k

1 − ϕ2k
2

(ϕ1 + Φϕ2)ϕ2k−1
1 − (ϕ2 + Φϕ1)ϕ2k−1

2

=
5

2

81k − 4k

27 · 81k−1 + 50 · 4k−1
,

L (N − k)

= ΦΓ
ϕ

2(k−1)
1 − ϕ2(k−1)

2

(ϕ1 + Φϕ2)ϕ2k−1
1 − (ϕ2 + Φϕ1)ϕ2k−1

2

= 15
81k−1 − 4k−1

27 · 81k−1 + 50 · 4k−1
,

since

ϕ1 =

√
Γ4 + Γ2 P

Q (Φ− 1)
2

+
√

Γ4 + Γ2 P
Q (Φ + 1)

2

2Γ
= 9,

ϕ2 =

√
Γ4 + Γ2 P

Q (Φ− 1)
2 −

√
Γ4 + Γ2 P

Q (Φ + 1)
2

2Γ
= −2.

This gives for instance

R (2) = R (4− 2) =
5

2

812 − 42

27 · 81 + 50 · 4
=

425

62

and

L (1) = L (4− 3) = 15
812 − 42

27 · 812 + 50 · 42
=

1275

2311
.

Finally, we note that R (k) is getting closer and closer
to

Q

Γ
Go
∞ =

Q

2Γ2

(
Γ2 +

P

Q

(
Φ2 − 1

)
+

√(
Γ2 +

P

Q
(1− Φ2)

)2

+ 4Γ2Φ2
P

Q

 =
15

2

and that L (k) is getting closer and closer to

ΦHo
∞ =

Φ

Ge
∞

= 2ΓΦ/

(
Γ2 +

P

Q

(
1− Φ2

)
+

√(
Γ2 +

P

Q
(1− Φ2)

)2

+ 4Γ2Φ2
P

Q

 =
5

9
.

as k decreases.

k R (k) L (k) x (k) u (k) Jk

3 5
2 = 2.5 0 5832

186391 ≈ 0.0313 0 1
2 ·

5·186

2·1863912

2 425
62 ≈ 6.8548 15

31 ≈ 0.48387 10044
186391 ≈ 0.0539 − 4860

186391 ≈ −0.0261 1
2 ·

31·425·184

2·1863912

1 34505
4622 ≈ 7.4654 1275

2311 ≈ 0.55171 41598
186391 ≈ 0.22318 − 22950

186391 ≈ −0.123 13 1
2 ·

2311·34505·182

2·1863912

0 2795225
372782 ≈ 7. 4983 103515

186391 ≈ 0.55536 1 − 103515
186391 ≈ −0.55536 1

2 ·
2795225
2·186391

Table 10: Numerical values corresponding to Example 24.

n 0 1 2 3 4 5 6 7 8
fn 0 1 5 31 425 2311 34505 186391 2795225

Table 11: Generalized Fibonacci numbers corresponding to Example 24.
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n 1 2 3 4 5 6 7

Gn 5 31
5

425
31

2311
425

34505
2311

186391
34505

2795225
186391

Q
ΓGn

5
2

31
10

425
62

2311
850

34505
4622

186391
69010

2795225
372782

Hn 0 1
5

5
31

31
425

425
2311

2311
34505

34505
186391

ΦHn 0 3
5

15
31

93
425

1275
2311

6933
34505

103515
186391

Table 12: Ratios of consecutive numbers from Table 11.

n −2 −1 0 1 2 3 4 5 6 7 8
gn

1
6 − 2

7 1 13
7 31 1753

7 2311 144753
7 186391 11739433

7

hn − 5
324

5
126 0 5

7 5 335
7 425 26855

7 34505 2174135
7 2795225

Table 13: Another method to find generalized Fibonacci numbers corresponding to Example 24.

7 Discussion and Conclusions

In this article, we found an efficient way to solve one-
dimensional LQR-problems. We showed that to each
specific problem, there is a corresponding Fibonacci
type sequence in terms of which the solution can be
written. More precisely, it turns out that the solution
of the corresponding Riccati equation, the feedback
gain, the controller state, the input and the subsequent
penalty functional values all can be expressed as ratios
of subsequent values generated by this Fibonacci type
sequence. Moreover, this way of solving the LQR prob-
lem naturally implies that we can find direct explicit
formulae (so called Binet type formulae) that computes
the kth desired value of some property, without knowl-
edge of previous values. The article is concluded by
showing the use of the theory and the formulae in four
separate examples of increasing complexity.
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Åström, K. and Wittenmark, B. Computer-Controlled
Systems: Theory and Design. Prentice Hall, 1996.

18

http://dx.doi.org/10.1016/j.sigpro.2009.02.003
http://dx.doi.org/10.1016/j.sigpro.2010.01.011
http://creativecommons.org/licenses/by/3.0

	Introduction
	General Setting of a Finite Horizon Discrete-Time LQR
	Generalized Fibonacci Sequences
	A Special One-Dimensional LQR Problem
	The General One-Dimensional Case
	Some Numerical Examples
	Discussion and Conclusions

