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Abstract

This article presents a condensed overview of the development of dynamics from Ancient Greece through
to the late 18th century. Its purpose is to bring an often neglected topic to the control community in as
interesting a fashion as the author can achieve.
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1 Introduction

This article describes a few key points in the develop-
ment of the field of dynamics. It begins with a brief
overview of dynamics’ origins in Ancient Greece, and
progresses through the Middle–Ages and the Renais-
sance, stopping at the times, places, and people that
the author considers most relevant. Following that, it
summarises the appearance of the Principia, and pro-
ceeds to explain its development into what we now call
Classical Mechanics.

It should be clear that the contents are not new: they
are well known in many fields, and have been for many
years. They are presented to the control community
in the hope that knowledge of, and interest in, the his-
tory of science might be improved. Any contribution
is solely in bringing the subject to an audience that is
perhaps generally unacquainted with it. Not only are
the contents not new, they are also by no means com-
plete or comprehensive. With those caveats, the author
hopes that some of the intended audience might find
value in what is presented.

Take what the pre–eminent physicist and philoso-
pher of science, Ernst Mach, wrote of Newton’s contri-
butions (Mach, 1886):

Newton discovered universal gravitation
and completed the formal enunciation of the
mechanical principles now generally accepted.
Since his time no essentially new principle has

been stated. All that has been accomplished
in mechanics since his day has been a deduc-
tive, formal, and mathematical development
of mechanics on the basis of Newton’s Laws.1

The sentiments expressed by Mach are broadly in
line with the opinions of many in academia. The pop-
ularity of a belief does not allow us to conclude whether
it is factual or not.

The motivation for writing this paper stems from
the sentiments of the great physicist, mathematician,
historian of science, and polemicist, Clifford Trues-
dell2. In his essay A Program Toward Rediscovering
the Rational Mechanics of the Age of Reason(Truesdell,
1968), he wrote:

The scientists, in so far as they take any
note of history at all, not only have shared the
historians’ neglect of the later [i.e., after New-
ton] mathematical development of mechanics
but also, in the main, have ignored what the
historians have learned about the earlier pe-
riods and have rested content with Mach’s
whole view or a rudimentary abstract of it.

1That general relativity has since superseded classical mechan-
ics is of no importance here.

2The term “natural philosopher” ought to suffice, but unfor-
tunately has not enjoyed popular or correct usage in recent
times (Noll, 1996).
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Whether reading a textbook on robotics, marine en-
gineering, aerospace engineering or, indeed, on me-
chanics itself, the statement above is too often applica-
ble. Discussions of dynamics almost invariably begin
by citing the work of Newton (1687) in his Principia,
and seldom proceed further than this opus. It is as
if classical mechanics arose from the genius of Newton
alone.

This hagiography does a great disservice to at least
four parties: firstly, to the scholars whose works pre-
date Newton; secondly, to Newton’s contemporaries
and successors, who actually synthesised the dynamics
that we know and apply today; thirdly, to the present–
day students who desire an accurate history of dynam-
ics; and fourthly to Newton himself, whose memory is
sullied by the misrepresentation of his work.

This neglect leads us to question why this history
is being contemplated here. The problem is that the
history of science, a large and growing field, seems to
filter little of its knowledge to the practitioners of sci-
ence. Scientific careers can be built on advanced topics
with absolutely no concept of what lies in the founda-
tions. The history of a science is vital to a humble
understanding of that science.

Awkwardly, the history of a science can only really
be grasped and analysed after the subject itself is suf-
ficiently well understood. However, once that science
is understood and a university degree comes to its end,
there is no drive to put the learning into a historical
perspective. A modern engineering degree is then more
like an advanced tradeschool diploma than the higher
form of learning and understanding that it ought to be,
and that it used to be.

A cursory and often inaccurate glance at history
seems sufficient nowadays, but should it be? The de-
velopment of dynamics is a much longer, halting and
laborious story that neither began nor ended with Isaac
Newton.

2 Dynamics in Antiquity

An analysis of motion ought to begin with the Ancient
Greeks3. Since the influence of the Greeks lasted two
millennia, it is inconceivable to describe the growth of
dynamics without mentioning them.

The dominant figure in the ancient development of
dynamics was Aristotle (384 BC– 322 BC). His writ-
ings (Aristotle, 330 B.C.) on this and on many other
subjects held sway over much of science for the next
two thousand years. Much of his reasoning on motion

3Greek philosophy is generally taken to begin with the work of
Thales of Miletus (ca. 624 BC–ca. 546 BC), in modern–day
Turkey.

Figure 1: Replica of Lysippos’ Aristotle.

stemmed from the faulty concept of the classical el-
ements (fire, air, water and earth). Each of these is
given its own natural place in the world: fire at the
top; air underneath fire; water below air; and finally
earth resting beneath them all.

Whenever an element was taken from its natural
place it would endeavour to return. This reasoning ex-
plained why an air bubble breathed underwater floats
to the surface, and why a rock thrown upwards falls
back to the Earth. Each object was then a combina-
tion of all of these. A feather, lighter than a rock, must
have more air than the rock, but less than the air it-
self. From this line of thinking arose “natural motion”:
motion that occurs due to the nature of the object. All
other motion was violent; it had a separate cause. A
brick falling to the ground would be natural, but a
brick thrown through the air would be violent.

Aristotle concluded that heavier objects fall faster
than light objects, and that this fall–rate is propor-
tional to their weights: an object twice as heavy falls
twice as fast. He also reasoned that the speed of pro-
gression through a medium was inversely proportional
to the density of that medium. This reasoning implied
that the speed of progression in the void would be in-
finite; thus he concluded that the very existence of a
void was impossible (Aristotle (330 B.C.), Book IV:8).

...between any two movements there is a
ratio (for they occupy time, and there is a
ratio between any two times, so long as both
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are finite), but there is no ratio of void to full.

In the same section, he wrote that if a void were to
exist, heavy objects would fall at the same rate as light
ones (“Therefore all will possess equal velocities. But
this is impossible.”). He used this supposed equality
of fall rates to then say by modus tollens that a void
cannot exist. He further wrote that, in a void, there
would be no reason for a body to stay in one place or
move to another, and so motion would continue for-
ever. It is often said, based on this statement, that he
enunciated or foresaw a principle of inertia, but this is
only possible by a selective reading of his works.

Among the various physical questions pondered by
ancient philosophers, the question of why an arrow con-
tinues to fly after it has left its bowstring was partic-
ularly perplexing. Aristotle reasoned that the arrow
displaced the air in front of it, which rushed behind
and then pushed the arrow forwards. The idea of a
thing moving violently without some other thing push-
ing it along the way; moving without a mover, was
entirely alien to Aristotelians. This fallacious separa-
tion of natural and violent motion would haunt physics
for two thousand more years.

The progress towards a truer representation was slow
and halting. Aristotle’s worldview became ingrained
upon both Western and Arabic science and theology.
His prevalence in the latter of these fields impacted the
progression of the former. Much of it became Church
dogma. By raising his theology above and beyond crit-
icism, it raised a protective wall, by proxy, around his
physics.

The lengthy dominance of Aristotle is now difficult
to imagine. Even into the early Renaissance entire con-
tributions on physics from philosophers would consist
solely of commentaries on Aristotle’s works: two mil-
lennia after they were composed.

The 6th century Alexandrian philosopher, John
Philoponus (ca. 490–ca. 570), wrote extensive cri-
tiques of Aristotelian physics (Philoponus, 2006), and
it is here that the inklings of a modern approach to
dynamics can be seen.

Philoponus found little satisfaction in Aristotle’s ap-
proach to motion, indeed he also found little satisfac-
tion in his other approaches. In his commentaries he
demolished Aristotle’s work on both natural and vio-
lent motion. For natural motion, Philoponus posited
that an object has a natural rate of fall. Falling
through a medium would hinder this natural rate:

But a certain additional time is required
because of the interference of the medium.

He introduced a natural fall rate in the void, and
subtracted from this the effect of the resistance of the

medium. This concept allowed him to reject the Aris-
totelian concept that the speeds at which objects fall
at are in proportion to their weights. He did this with
appeal to the same kind of experiment carried out in
Renaissance Italy around a millennium later4. Philo-
ponus did not believe in the equality of fall–rates in
the void. In fact he concluded that this concept was
wrong. His belief was that heavier objects do fall faster
than light ones in a void.

For violent motion, he asserted that when an object
is moved, it is given a finite supply of forcing impetus5:
a supply of force that, while it lasted, would explain the
object’s continuing motion:

Rather it is necessary to assume that some
incorporeal motive enèrgeia is imparted by
the projector to the projectile...

This incorporeal motive enèrgeia is exhausted over
the course of an object’s motion, which rests once this
exhaustion is complete. This property was internal
to the body. He struck fairly close to some kind of
rudimentary concept of kinetic energy. At the very
least, he struck close to some concept which we can
now relate to kinetic energy.

The conclusion of the sentence quoted above is:

...and that the air set in motion contributes
either nothing at all or else very little to this
motion of the projectile.

The strongest and most groundbreaking insight that
Philoponus made was that a medium does not play
a role in maintaining motion. It acts as a retarding
force. This notion was in direct opposition to Aristotle,
who required that the medium should cause the con-
tinuing motion. This paradigm shift that John Philo-
ponus introduced allowed him to explain that motion
in a void was possible. His lasting contribution is with
these qualitative analyses. His quantitative explana-
tions are without merit, although these analyses res-
onate through Galileo’s dynamics.

In the centuries that followed Philoponus, other
philosophers followed in a staggering and haphazard
progression towards Newton. It would be another mil-
lennium before Aristotelian motion would be disre-
garded. The reasons are various, but much of them are
theological in nature. Philoponus’ writings on Trithe-
ism were declared anathema by the Church, which led
to the neglect, condemnation, and ridicule of his writ-
ings. Zimmerman had the following to say (Zimmer-
man, 1987):

4The comparison of the speeds of falling objects, carried out by
Benedetti around 1553 (commonly attributed to Galileo).

5Impetus theory, the precursor to the modern principle of iner-
tia, can properly be attributed to Philoponus.
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His writings, then and later, enjoyed noto-
riety rather than authority.

The inferior works on mechanics from his contem-
poraries, such as Simplicius, were treated in a more
favourable light.

3 The Middle Ages

In the following centuries, the development of dynamics
was very slight. There is a pernicious popular belief
that science stood still from the fall of the Western
Roman Empire (476 A.D.) until the Renaissance: the
so called Dark Ages. While the remark may hold water
for certain periods of the Early Middle Ages, it has no
standing whatsoever with the High and Late Middle
Ages. The idea that the world of understanding stood
still for a millennium is a hopelessly incorrect one.

Aristotle’s views, or variations on these, were anal-
ysed further by the likes of the Andalusian–Arabs
Avempace and Averröes6 in the mid–13th century. The
gratitude owed to these philosophers should not be
understated. It is through their works that Philo-
ponus’ thoughts were preserved: his books were not
published in Western Europe until the early 16th cen-
tury. Averröes wrote such extensive treatises on Aris-
totelian physics and theology that he was nicknamed
The Commentator by Thomas Aquinas. The intellec-
tual stupor existed in the West because an Aristotelian
theological worldview was dogma. Those studying me-
chanics were reticent to go further than simple rein-
terpretation of Aristotle, even when so much of it was
clearly wrong.

The stimulus that reinvigorated the field can be
traced to the Condemnations of 1277. In this year,
Tempier, the Bishop of Paris, condemned various doc-
trines enveloping much of radical Aristoelianism and
Averröeism, among others. This event is important
because the condemnation of Aristotle’s theology led
philosophers to question the truth of the rest of his
worldview. Deviating from dogma was then, and re-
mained for centuries more, very dangerous for philoso-
phers, but now Aristotle’s physics were no longer pro-
tected. The importance of the Condemnations led to
what Duhem (1917) called:

...a large movement that liberated Chris-
tian thought from the shackles of Peripatetic
and Neoplatonic philosophy and produced
what the Renaissance archaically called the
science of the ‘Moderns.’

6Ibn Bājjah and Ibn Rushd in Anglicised Arabic respectively.

Soon after, in the early 14th century, the Oxford Cal-
culators7 explained, in a kinematic sense, the motion of
objects under uniform acceleration. Importantly, these
men did not concentrate solely on the qualitative de-
scription of motion. What was previously a murky de-
scription of motion became a quantitative derivation.
They answered kinematic questions numerically. What
is fantastic is that the notion of instantaneous speed
was within their grasp, even without the strong grip af-
forded us by calculus. The mean–speed theorem dates
from this period, and is attributed to William Heytes-
bury8. That theorem sprung from the investigations
into how two bodies moving along a path at different
speeds might arrive at an endpoint at the same time
(see the essay “Laws of Motion in Medieval Physics” in
Moody (1975)). They were additionally responsible for
separating motion itself from its causes: the separation
of kinematics and kinetics. Bradwardine9 also noted:

All mixed bodies10 of similar composition
will move at equal speeds in a vacuum.

The statement above shows that the Mertonians
were well aware of the principle that objects of the
same composition fall at the same rate, regardless of
their mass. The fall rates were still explained in terms
of the nonsense classical elements of Ancient Greece,
but they were explained. Within their work can be
found thorough analyses of uniform and accelerated
motion. Their analytical approaches to motion were
well received Europe–wide.

French priest Jean Buridan (1300–1358) was by most
accounts the giant of fourteenth century philosopy. He
expounded a theory that can properly be described as
an early and rudimentary concept of what we now call
inertia.

He posited in a similar manner to Philoponus that
the motion of an object was internal to it, and impor-
tantly recognised that this impetus does not dissipate
through its own motion: that something else must act
upon the object to slow its motion. His insights into
the implications of this were more advanced than any-
thing prior. In discussing a thrown projectile, he said
that it would:

...continue to be moved as long as the im-
petus remained stronger than the resistance,

7The Oxford Calculators were a group of 14th cen-
tury academics based at Merton College, Oxford, and
included William Heytesbury, Thomas Bradwardine, Richard
Swineshead and John Dumbleton.

8Bizarrely attributed to Galileo by many.
9The selfsame Bradwardine spoken of in Chaucer’s Canterbury

Tales.
10A mixed body is one that consists of two or more of the clas-

sical elements: fire, air, water and earth.
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Figure 2: Albert of Saxony’s motions.

and would be of infinite duration were it not
diminished and corrupted by a contrary force
resisting it or by something inclining it to a
contrary motion.

His statement is an early and rudimentary notion
that is qualitatively similar to Newton’s First Law. He
entertained this notion of infinite motion, a full three
centuries before. His talent in descriptions of the qual-
itative properties was not matched by his talent in the
quantitative.

Buridan’s student, Nicolo Oresmè (ca. 1323–1382),
developed geometrical descriptions of motion. More
than that, he used geometry as a method of explaining
the variations of any physical quantity. As great as this
was, he had a poorer understanding of dynamics than
his tutor, and treated impetus as something which de-
cays with motion (Wallace, 1981). Oresmè’s work is
a prime example of the stumbling advancement of dy-
namics: it was rare that any one person could advance
in all areas at once.

Albert of Saxony (ca. 1316–1390), another student
of Buridan, took impetus theory forwards in projectile
motion. For an object propelled horizontally, he rea-
soned that the motion had three distinct periods. The
first of these was purely horizontal, where the body
moved by its own impetus. The second was a curve
towards the ground, as gravity began to take effect.
The third was a vertical drop, as gravity took over and
impetus died. Although maintaining the distinction
between natural and violent motion, Albert at least
came closer to the true shape of projectile motion.

It is quite difficult to conceive the true effect that the
philosophers from the Oxford and Parisian schools had
on mechanics, and on science in general. Mechanics

had moved from indistinct qualities into defined quan-
tities: if an object moves at this speed, how far does
it go in this amount of time? If an object accelerates
in this manner, what will its speed be after a given
period? These questions were asked and answered.

Shortly after Giovannia di Casalè (d. ca. 1375) re-
turned to Genoa from studying at Oxbridge, he devel-
oped a geometric approach in his book “On the ve-
locity of the motion of alteration” similar to that of
Oresmè. This work influenced the Venetian, Giambat-
tista Benedetti, in his 1553 demonstration of the equal-
ity of fall–rates. The influence that Casali’s geomet-
ric approach wielded is evident while reading Galileo’s
works on kinematics.

An important point is then evident: the field of kine-
matics had leapt ahead of dynamics. Truesdell (1968)
speaks of the impact of the Calculators in the following
glowing terms:

In principle, the qualities of Greek physics
were replaced, at least for motions, by the
numerical quantities that have ruled Western
science ever since.

While kinematics was becoming more and more ca-
pable of describing both uniform and accelerated mo-
tion, and was able to quantify these analytically, nu-
merically and geometrically, philosophers remained un-
able to explain the why behind them. The causes of
motion, now separate and distinct from kinematics,
were not very much closer to being discovered. This
situation changed very little until the late 16th cen-
tury.

4 Galileo

Galileo Galilei (1564–1642), shown in Figure 3, sought
these causative descriptions of motion: he was the first
of the modern dynamicists. The Italian was well–read
in the workings of both the Parisian and Mertonian
schools. From these, he set out into the still poorly
understood field of kinetics.

To move forward, he examined the most successful
of the ancient sciences: Archimedes’ hydrostatics. He
took those principles as inspiration to examine the mo-
tion of a falling object. He utilised no mixed–body
theory of matter. Instead, he treated bodies, and the
media through which they travel, in terms of their den-
sities11.

Archimedes’ propositions explain the forces of buoy-
ancy in equilibrium: they detail where an object will
rest in a body of water. Galileo extended these prin-
ciples from static into dynamic concepts. Archimedes

11or, rather, their specific gravity.
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Figure 3: One of Sustermans’ portaits of Galileo.

explained the behaviour of bodies and their natural po-
sitions of rest. Galileo took this notion and applied it
to bodies in motion. His monumental postulation was
that buoyancy, in addition to determining a body’s po-
sition of rest, furthermore determines how fast a body
will reach that position of rest. He used this force of
buoyancy to try to explain why objects fell at the speed
they did.

It is wrong to say that he devised a dynamical law
based on static principles. His theorems are a general-
isation of Archimedes’ static principles, which are then
derivable from Galileo’s: the converse is untrue.

These notions were not wholly new. Instead of us-
ing a ratio of weight to resistance in order to explain
motion, Galileo described it as a natural motion from
which was subtracted the effect of the medium. In-
stead of having velocity determined by the ratio of a
body’s weight to the medium’s resistance, it was to be
determined by a natural value minus some part due to
the resistance of the medium. The approach, ingenious
though it was, led to no hoped for grand principle.

The comparison between Galileo and Avempace is
commonly drawn, as Avempace had postulated the
same kind of thing: discarding the Aristotelian ra-
tio. Galileo was certainly aware of Avempace’s work,
through what Averröes wrote of it12. It is unfair to
say that Avempace was the originator of this sort of
analysis, as it predates him by hundreds of years. This
theory again goes back to John Philoponus, who was
also well known to Galileo. Additionally, Avempace
did not postulate Galileo’s explanations for the causes
of motion (i.e., a dynamic buoyancy law).

A note should be made on his supposed discovery

12In his early notes, Galileo cites Averröes ahead of all,
save Aquinas. See the essay “Galileo and the Doctores
Parisienses” in (Wallace, 1981).

of the equality of fall–rates. Galileo did not make this
discovery. The story is that in 1589 he dropped various
cannon balls from the Leaning Tower of Pisa, and thus
the world came to know that all objects fall at the same
rate. The story is wrong on several counts. Firstly, this
experiment does not even demonstrate equal fall rates:
it only shows that objects of the same composition fall
at the same rate, independent of their weight. Sec-
ondly, in 1589, Galileo did not believe in the equality
of fall–rates. His notes from this period (Galileo, 1590)
state that objects of equal density fall at the same rate,
but that denser objects fall faster than less dense ones:

I say therefore that in a vacuum, heav-
ier bodies would descend more rapidly than
lighter ones, because the excess of the heav-
ier bodies over the medium would be greater
than the excess of the lighter ones.

That bodies of the same density fell at the same rate
had been stated already by Bradwardine two hundred
years before. Thirdly, the selfsame experiment had al-
ready been performed by Giambattista Benedetti years
before, and his work was known to Galileo.

It is difficult to ascertain when Galileo concluded
that all objects fall at the same rate. He withheld
publication on this subject for many years. The initial
cause of his withholding was his own desire to bring
the subject to a completion before revealing it. The
later cause was the restrictions placed on him by the
Inquisition. He knew of it by 1604, as he revealed it
in correspondence with a confidant. He felt betrayed
when a friend of his mistakenly revealed it to the world
in the early 1630s, and only published anything on the
matter towards the end of his life.

For all Galileo’s effort, he never satisfied himself
with his explanations of the causes of motion. In Dia-
logues Concerning Two New Sciences (Galileo, 1638),
towards the close of his life, he sadly confessed to this
failure. After listening to the thoughts on dynamics
voiced by Simplicio and Sagredo, Salviati, proponent
of Galileo’s philosophy, makes the comment:

Now, all these fantasies, and others too,
ought to be examined; but it is really not
worth while. At present it is the purpose
of our Author merely to investigate and to
demonstrate some of the properties of accel-
erated motion (whatever the cause of this ac-
celeration may be)...

Here Galileo resigns himself to never finding what
he sought. His characters instead progress through
thorough discussions of the kinematics of motion alone:
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Salviati and Sagredo dragging Simplicio13 by the coat-
tails into modern science:

...we have decided to consider the phenom-
ena of bodies falling with an acceleration such
as actually occurs in nature and to make this
definition of accelerated motion exhibit the
essential features of observed accelerated mo-
tions.

Over the course of the rest of the book, Galileo sets
forth his definitions of uniform and accelerated mo-
tion in lightning fast demonstrations. The topics of
discussion then go through motions of various things,
especially that of projectiles. This work sounded the
death knell of Aristotle’s physics. In discussing a body
thrown upwards, then falling back downwards, Simp-
licio voices the two thousand year old distinction be-
tween natural and violent motion. Sagredo replies:

...this distinction between cases which you
make [i.e., violent and natural] is superfluous
or rather non–existent.

Much is said about Newton unifying motion in the
heavens and motion on Earth: that is, recognising that
the laws apply equally so to the orbit of a massive
planet as they do to the fall of a tiny apple. Very little
is said about unifying natural and violent terrestrial
motion, and yet it took two millennia of thought be-
fore the two were recognised as one and the same. The
separation of the two had permeated Western science
for two thousand years, and it was Galileo who demon-
strated the insight to finally and permanently demolish
this concept.

His dynamics were noteworthy and had a very large
influence over his successors, but the true contribution
of Galileo is in his kinematics, not in his dynamics. He
could explain what he observed: uniformly accelerated
motion, but he could not explain the causes behind it.
While he failed, he set a great example for his suc-
cessors: one that was well learnt and will never be
forgotten. His dynamics were laden with no mystical
indistinct properties. They were laden with definitions
and analyses.

Aristotelian dynamics had been staggered by many
deserved blows, but had kept standing, in various
poses, for two thousand years. Galileo delivered the
coup de grâce, putting it to its long overdue rest.

By the mid 17th century, dynamics was understood
in the murkiest of ways. A myriad of problems, each re-
quiring its own ingenious solution, was solvable almost
solely by special cases. Much of this problem solving

13The name is a portmanteau of Simplicius, the classical Aris-
totelian, and the word for simpleton.

was needed before any general laws of dynamics could
finally be grasped. Today we learn the principles, and
then how to apply them. The developers of the field
solved extraordinarily difficult problems, and lots of
them, before any true governing principles were found.
We learn the principles and then tackle problems, but
the physicists had to tackle the problems before they
could see the principles.

The giant of mechanics in the years leading up
to Newton was the Dutchman, Christiaan Huygens
(1629–1695). He was the first to explain oscillations of
a finite pendulum, which he did so for a special case.
His writings on solid body collisions had a monumental
effect on the world. He observed that after two solid
bodies collide, their collective speed may well be in-
creased or decreased, but their collective momentum
remains the same: perhaps the first true expression
of the conservation of momentum14. He furthermore
recognised that in rigid body collisions, the centre of
gravity of the system remains in uniform motion: a
hugely penetrating notion.

5 Sir Isaac Newton

Sir Isaac Newton (1643–1728), depicted in Figure 4,
made contributions to virtually every area of natural
philosophy, mathematics, optics and astronomy. His
monumental publication, Philosophæ Naturalis Prin-
cipia Mathematica, usually called The Principia in
short, was published in 1687. It is likely the most in-
fluential book in the field of classical mechanics, yet is
little read. Its purpose was set forth in its preface:

...mechanics will be the science of motion
resulting from any forces whatsoever, and of
the forces required to produce any motion...

Newton set out to explain phenomena throughout
the universe. What lay within was to apply every-
where, and to every process. The trajectory taken by
a cannon ball was to be governed by the same laws
which governed the orbits of the planets.

As the start of his work, he states his definitions
of mass, momentum, inertia and forces, both through
contact and at a distance. He then states his laws:

First Law Every body perseveres in its state of rest,
or of uniform motion in a right line, unless it be
compelled to change that state by forces impressed
upon it thereon.

14Descartes is often credited with this concept, but his notion
was the bulk of an object times its scalar speed. His rationale
was entirely different too.
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Figure 4: One of Kneller’s portaits of Newton.

Second Law The alteration of motion is proportional
to the motive force impressed; and is made in the
direction of the right line in which that force is
impressed.

Third Law To every action there is always opposed an
equal reaction: or the mutual actions of two bodies
upon each other are always equal, and directed to
contrary parts.

It is broadly divided into three books, each of which
alone would eclipse almost any other. Books One and
Two are titled Of the Motion of Bodies, being split
into two exhaustive analyses. The third is titled The
System of the World.

The first book analyses motions in a void. From his
laws, he analyses a multitude of motions, such as ellip-
tic, parabolic and hyperbolic orbits around some focus.
He investigates the forces that maintain these, i.e. the
centripetal forces. Universal gravitation is introduced.
After showing how point masses behave in the void un-
der gravitation, he demonstrates that finite bodies can
be treated as such. Kepler’s Laws follow directly.

The first book organised and systematised principles,
some of which were at least dimly understood before,
but these principles had never been organised together
into a system of analysis for application everywhere.

The second book sets out to explain motion on
Earth, where motion does not occur in a void: he
sought the details of motion in resisting media. It is
here that Newton departs from his program of deduc-
ing physical behaviour based on his laws: he finds but

little use for them. For example, in all his treatments
of fluidic motion he finds no room to apply his princi-
ple of momentum. In contrast, he conjures ingenious
hypotheses to explain a myriad of things ranging from
projectile motions to the speed of sound in air. This
book is a testament to Newton’s towering stature as
a mathematician and dynamicist. The second book of
the Principia is almost entirely new. The scholium of
the first section of it reads:

But, yet, that the resistance of bodies is in
the ratio of the velocity, is more a mathemat-
ical hypothesis than a physical one.

This sentiment is applicable to much of the hypothe-
ses in the book. Today it is mostly forgotten. The book
is dominated by hypothesis after hypothesis, with New-
ton displaying his flair for creative solutions: often pre-
cise, often an excellent approximation, but also often
wrong and today of only historical value.

There are veins of gold hidden within. His observa-
tion that fluidic resistance is proportional to the square
of velocity can be found, as can the first description of
internal fluidic friction:

The resistance arising from the want of
lubricity in the parts of a fluid is, cæteris
paribus, proportional to the velocity with
which the parts of the fluid are separated from
each other.

That most of the results were incorrect cannot be a
criticism of Newton either as a physicist or mathemati-
cian. The contribution of this book is immeasurable.
For instance, it constitutes the beginning of fluid dy-
namics, and studied many of its problems for the first
time. From his efforts, his contemporaries and suc-
cessors were gifted with a bridgehead from which to
attack these subjects in earnest. A myriad of poten-
tial motions through fluids is contemplated. The book
is the staging point for hydrodynamics. Newton con-
templated which hullform might pass through the wa-
ter with least resistance, introducing an optimisation
problem that found application throughout the 19th
century.

The third book set forth his solutions to problems in
celestial dynamics, with great success. Kepler’s Laws
of Planetary Motion had resulted from Newton’s own,
and he performed exhaustive analyses of the Solar Sys-
tem.

The deficiencies in the Principia are little discussed.
To the modern scholar, it is often impenetrable and
confusing; the language of mathematics having evolved
so much since then. A common remark made about the
Principia is that Newton strangely resorts to geometri-
cal methods instead of his own calculus. Newton does
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not use his notation of fluxions, but even as soon as we
arrive at Lemma II of Book I, the notion of calculus is
present, if in an unfamiliar form.

For rigid body mechanics, there is no treatment of
rotation. Although Newton says that the spinning top
“does not stop spinning except insofar as it is slowed
by air.” there is no justification given. His statement
appears directly after his statement of the First Law,
but this law cannot tell us anything of the spinning top.
Newton might have perceived that the top continues to
spin, just as it would continue in linear motion if so im-
pelled, but it is not possible to explain the spinning top
using what is within the Principia. There is certainly
no treatment of angular momentum. The motion of a
rigid body cannot be described by the methods given
in the Principia.

There is no treatment of flexible bodies, such as the
catenary curve or the vibrating string, nor is there any
analysis of the finite body pendulum. No equations
of motion appear for systems of more than two free
masses, or one constrained. A prime example of the
field’s infancy is the three–body problem. Newton at-
tempted to solve this problem, but the contents of the
Principia are insufficient to do so. He devised insightful
approximations and valid inequalities, but the three–
body problem was insoluble from his principles. His
talent in this area is evident, as his work would not be
surpassed until the mid–18th century by the efforts of
Euler and Lagrange.

That Newton did not solve all of mechanics’ prob-
lems is not a criticism at all, but only part of a clear–
headed appraisal of what he did do. His achievements
were monumental. He ought not to be credited with
the completion of classical mechanics, but rather its
beginnings.

In the century following The Principia’s publication,
the field of mechanics swelled immensely. For all the
credit given to Newton, the world ought to be equally
grateful to his contemporaries and successors, espe-
cially Leonhard Euler, the Bernoullis Jakob and John,
and Joseph Lagrange. These are the men who synthe-
sised what we now apply today.

6 Newton’s Contemporaries and
Successors

If The Principia contains no treatment of angular mo-
mentum, contrary to popular belief, then where and
when did this law arise and who discovered it? The
answer is difficult to ascertain, as the principle was ap-
plied for many years before it was recognised for what
it was. For a comprehensive analysis, see Whence the
law of moment of momentum? in (Truesdell, 1968).

Figure 5: Jakob Bernoulli: towering mathematician
and physicist of the 1700s and early 1800s.

The law of angular momentum is commonly treated
as a consequence of linear momentum, but that is no
more true than the common statement that Newton’s
First Law can be ascertained from his Second. This
approach works for special cases only: it is not true in
general. The Newtonian equations cannot contemplate
deformable bodies or motion of a continuum without
severe restriction. Angular momentum is a law of me-
chanics independent from any other. It took most of
the 18th century for this to be realised.

In the Acta Eruditorum of 1686, Jakob Bernoulli
(1654–1705), shown in Figure 5, analysed the motion
of a pendulum using the ancient law of the lever: i.e.,
by balancing the moments. By applying this static
problem to the dynamic problem of the pendulum, he
sought a new methodology for mechanics. His attempt
at this stage was flawed, but was published in correct
form in 1703 (Bernoulli, 1703). His efforts led him to
introduce many concepts which are now elementary, or
even obvious, today.

By balancing the moments, the law of the lever is
found. This static equilibrium condition was gener-
alised into a dynamic equilibrium. Jakob Bernoulli
wrote that the force of the lever can be regarded as
equivalent to the acceleration per unit mass reversed
in sign, thereby restoring a static condition. His was
the earliest proper explanation of inertial force, and
is a progenitor of what is now by convention called
D’Alembert’s Principle.

Jakob Bernoulli’s statement of the moment of mo-
mentum can not be considered a consequence of apply-
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ing Newton’s Second Law. Its first appearance, flawed
though it was, predates the publication of the Prin-
cipia by a year. To emphasise: the appearance of the
law governing angular motion predates Newton’s 2nd
law, which governs only linear motion. That said, it is
only to be found and understood with great difficulty.
The impenetrability of Jakob Bernoulli’s work is evi-
dent, since it took many years before the genius within
was recognised and developed by Euler.

Through analysing the catenary curve15, it was
Jakob Bernoulli who first recognised that solutions
could be derived by balancing forces applied to in-
finitesimal portions of the cable, and furthermore that
the selfsame solutions could be derived by balancing
the moments acting on those infinitesimal portions:
two essential principles of mechanics are equivalent for
certain systems. This apparent equivalency caused the
great physicists of the 18th century to seek, in vain, the
single unifying principle through which all of mechanics
could be analysed.

Using this work on the catenary as a springboard,
Jakob Bernoulli vaulted into an analysis of elastic
beams: the bending of finite bodies, which he pub-
lished in the Acta Eruditorum of 1694. Here he recog-
nised that the balancing of forces or moments alone
was insufficient to the task. Between each infinitesimal
stretch, there must be a contact force and moment.

In addition to these mammoth contributions, Jakob
Bernoulli was the first to state how the motion of a
constrained system can be analysed. Given the con-
straints, propose the forces which maintain these con-
straints. The motion of a system of constrained masses
can then be analysed. Seemingly obvious today, the
idea finds no ancestor before Jakob Bernoulli.

If it is typical to elevate some beyond their true
achievements, it is equally typical to undermine those
with achievements beyond measure. The laws, equa-
tions and principles named after Leonhard Euler
(1707–1783) devastate Stigler’s Law of Eponymy16,
and yet he is the very reason that the law applies vir-
tually everywhere else. It is through Euler that much
of dynamics was delivered to the modern world.

Between 1747 and 1750, Euler took his own works on
constrained systems, and applied them to the three–
body problem. In this work, he wrote:

The foundation... is nothing else than the
known principle of mechanics, du = pdt, ...we
can see that this principle holds equally for
each partial motion into which the true mo-
tion is thought of as reduced.

15The shape that a thin hanging cable assumes under its own
weight.

16“No scientific discovery is named after its original discoverer.”

Euler is here saying that what had been found was
an approach that applied to any dynamic process, and
that it additionally applied to every part of that pro-
cess. It was simply not understood prior to Euler’s
paper. In retrospect it seems too obvious to even men-
tion. This retrospection emphasises the difficulty of
analysing the history of science: today, it is thoroughly
difficult not to see this principle as self–evident in New-
ton’s writings. What is obvious to us today is supposed
to have been obvious then, but that is wrong.

In Euler’s paper, Discovery of a New Principle of
Mechanics (Euler, 1750), he wrote down the following:

Fx = Max, Fy = May, Fz = Maz.

Following his statement of the new principle, he
derived the tensor of inertia by taking the moments
about the centre of gravity. By these equations, Eu-
ler claimed, all mechanical problems could be solved.
That we now call these equations Newton’s Second Law
is immaterial. In the words of Truesdell:

...they occur nowhere in the work of New-
ton or of anyone else prior to 1747. It is
true that we, today, can easily read them into
Newton’s words, but we do so by hindsight.

Although Euler initially believed that the issue was
resolved, he shortly came to realise his mistake. The
principle of angular momentum lay hidden. The full
classical equations would not be written down for an-
other two decades.

The rotations of even a rigid body were problem-
atic, let alone of a system of particles or continuum.
That a rigid body could rotate ad infinitum was dimly
perceived for almost a century before it was properly
explained. As mentioned, Newton’s spinning top is a
key example, but we simply cannot admit stabs–in–
the–dark. Throughout the early to mid 18th century,
physicists had been unable to explain rotational motion
in more than a single axis.

Euler contemplated the problem in the early 1730s,
but did not approach it again for another decade. The
driving force was his work on naval architecture in Sci-
entia Navalis (Euler, 1749). Here he was forced to deal
with oscillations very different from the simple planar
type. He hypothesised that each body has three or-
thogonal axes about which it may rotate.

The first rigorous treatment of these axes was by the
Hungarian physicist, Ján Andrej Segner (1704–1777).
He proved that free rotation is possible through a min-
imum of three individual axes, there being more than
three for special cases of symmetry (spheres, etc.). Eu-
ler recognised the strength of Segner’s reasoning, and
was the first to reason that these axes all had to pass
through the centre of gravity.
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1776 saw the birth of a foundation of classical me-
chanics. It was in this year that Euler published his
First and Second Axioms (Euler, 1776):

F = Ṗ, P = Mv

L = Ḣ, H = Iω.

At last, the road devised by Newton, and hewn by
many, had been paved by Euler. The laws of vectorial
mechanics were understood and formulated then just
as they are today.

7 The Indirect Approach

Newton’s approach takes force and momentum as its
basis. It is often called the direct approach, or vectorial
dynamics. D’Alembert wrote what is anything but a
shining endorsement of the direct approach in his book
Treatise on Dynamics in 1743:

Why should we appeal to that principle
used by everybody nowadays, that the ac-
celerating or retarding force is proportional
to the element [i.e. differential] of velocity, a
principle resting only on that vague and ob-
scure axiom that the effect is proportional to
the cause? ...we shall be content to remark
that the principle, be it true or be it dubi-
ous, be it clear or be it obscure, is useless to
mechanics and ought therefore to be banished
from it.

The lionisation of the Newtonian approach by the
British certainly was not quite mirrored everywhere
on the continent. In contrast to the direct approach,
and with equal validity, the scalar quantities of energy
and work can serve as a basis for an approach called
the indirect approach, or analytical dynamics (Williams
Jr., 1996).

The history of analytical dynamics is just as cloudy
and obscure as the development of Newton’s Laws.
Gottfried Wilhelm Leibniz (1647–1716) is the earli-
est true standard bearer for using energy and work as
the bases for mechanical principles. He posited that
through any process, a vis viva (living force) is pre-
served. This term he equated to mv2 and so Leibniz’s
living force is just twice the kinetic energy. He believed,
and so did his contemporaries, that conservation of vis
viva contradicted the Cartesian and Newtonian notion
of conservation of momentum. Leibniz wished to use
this vis viva, along with his dead force (potential en-
ergy), as the basic principles of mechanics. This “liv-
ing” force irritated the delicate sensibilities of many,
and with good reason. A living force seemed to invite

the teleological and theological qualities of the ancient
sciences to return from the dead.

One must question why Leibniz objected so much
to the Cartesians’ and Newtonians’ use of momentum.
For them, landmark results were already inbound using
the principle of momentum and its conservation. What
was special about this vis viva, and why did velocity
appear twice? These notions stem from Galileo’s Two
New Sciences.

In his final Dialogue (Galileo, 1638), Galileo made
key observations related to the indirect approach.
Falling from a given height, a body acquires a veloc-
ity that is precisely the same velocity required to raise
the body back to the given height. Since the square
of the velocity acquired is proportional to the height,
it seemed reasonable to surmise that v2 has a link to
some fundamental property of motion. Running along
the same vein of gold, he noted that velocity acquired
by a body rolling down an incline is only influenced by
the height of the fall and not by the inclination itself:
he recognised that the velocity was independent of the
path.

Leibniz considered many cases using his live and
dead forces. Indeed, many problems can be solved
by examining the energy quantities at key points. In-
stead of the Newtonian momentum, and its alteration
through impressed forces, Leibniz considered kinetic
energy, and its alteration through the work done by
impressed forces. The mathematics behind what lay
ahead was undeveloped in his day, and the true leap
forward for the indirect approach would have to wait
many years from Leibniz, until it found its home with
Euler and Lagrange. Before the indirect method could
come to fruition, the calculus of variations was re-
quired.

Along those lines, an interesting period in this devel-
opment is the brachistochrone challenge of the late 17th
century. Brachistochrone is a portmanteau of brachis-
tos and chronos: Greek for shortest and time respec-
tively. The problem is to take a bead on a frictionless
wire, acted upon only by gravity, and to then deter-
mine the quickest possible route between two points A
and B. It can be seen in Figure 6. The first version
of the problem was posed by Galileo in Two New Sci-
ences (Galileo, 1638), but his solution was incorrect,
mistakenly thinking that the solution was the arc of a
circle. He at least recognised that it was not a straight
line.

The first person to solve the problem was John
Bernoulli. He posed this problem to the mathemati-
cians of Europe as a challenge in the Acta Eruditorum
of 1696.

In choosing the wording of his challenge, Bernoulli
gave an unmistakable hint at how he had solved the
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Figure 6: John Bernoulli’s Brachistochrone.

problem. He invoked both Pascal and Fermat. Pas-
cal had offered prizes for challenges on the cycloid four
decades prior, while Fermat showed that light always
takes the path of least time (Fermat’s Principle). The
solution to John Bernoulli’s challenge was the former’s
curve, and his method was by applying Fermat’s prin-
ciple.

Solutions soon arrived from his elder brother Jakob,
Leibniz, de L’Hôpital and an anonymous one from
Newton17; all showing the solution to be the cycloid.

This challenge led to a clash between the fragile egos
of the two Bernoullis. Following publication of the so-
lutions to the brachistochrone problem in 1697, Jakob
Bernoulli posed a more difficult version, again in the
Acta Eruditorum. The first version sought the mini-
mum time to a certain point. Jakob Bernoulli instead
posed a problem to minimise the travel time to a ver-
tical line. That is, to find out which of all the possible
cycloids reaches the line first. The reposed problem is
depicted in Figure 7.

This problem was quickly tackled by both Bernoullis,
Leibniz and Euler. The answer to the problem is the
cycloid which passes through the line at a right angle
to it. It is not, however, the answer to the problem
which makes this challenge especially noteworthy.

The second version of the brachistochrone was obvi-
ously another minimum time problem, but now it was
a problem to be solved by contemplating all possible
paths. It was hardly the first optimisation problem to

17Though anonymous, John Bernoulli realised its author, and
remarked in a letter that “we know indubitably that the
author is the celebrated Mr Newton; and, besides, it were
enough to understand so by this sample, as ex ungue
Leonem.”(Whiteside, 2008). The phrase is usually given in-
correctly as “tanquam ex ungue leonem.”
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Figure 7: Jakob Bernoulli’s Brachistochrone.

be contemplated, but it was the particular one which,
in being solved, led to the development of the calculus
of variations. In the years of the early 18th century,
the calculus of variations was formalised and organised
by the likes of John Bernoulli, D’Alembert and Euler.

It was during this timeframe that D’Alembert and
Euler finally generalised Jakob Bernoulli’s inertial
force. They formalised the pre–existing principle and
showed that the principle of virtual work applied
equally to bodies in motion. Mechanics was then gifted
with a single variational principle.

The furtherance of the attempts to use energy and
work to ascertain physical principles is due to the work
of the Frenchman, Pierre de Maupertuis (1698–1759).
He posited that in many processes, an action is min-
imised, with this action being defined according to
the process. His perceptive qualities were remarkable.
Most of his definitions of action found no use, but oth-
ers did. For light, he posited in a 1744 paper, Agree-
ment of several natural laws that had hitherto seemed
to be incompatible, that this action was the integral of
the speed over the path taken. With this principle, he
struck gold, deriving Snell’s Law from an indirect ap-
proach. His genius here mirrors what John Bernoulli
did in his brachistochrone solution.

This principle of least action became ubiquitous
throughout much of mechanics. In the same year, Euler
published his own results on the matter. He posited it
in a far more general and accurate way, and applied the
integral of the momentum of a body over its path trav-
elled, giving the reduced action, i.e., the action with
kinetic energy alone. In the following years, he applied
the same to static problems, taking variations of the
potential energy. This method lead him to the classi-
cal result that a body, or a system of bodies, at rest
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always lie at a minimum of potential energy.
The thrust in this direction was taken up by

the French–Italian mathematician, Joseph Lagrange
(1736–1813). A contemporary of Euler in his later
years and common collaborator, the two formulated the
Euler–Lagrange equation, bringing the formulation of
the indirect method on by leaps and bounds. Lagrange
was the true champion of this method throughout his
Mècanique Analytique (Lagrange, 1788). In addition,
he recognised the usefulness of generalised coordinates,
giving the method a towering strength: the invariance
of the method to coordinate changes.

The future development of this field through Hamil-
ton and Jacobi is rather well understood, and so here
is a good point to close this history.

8 Conclusion

This article summed up, as concisely as the author
could achieve, the development of the broad field of
dynamics, progressing speedily from Aristotle, through
Philoponus, on to Galileo, and Newton, and finishing in
the details of how the great minds of the 18th century
synthesised many of the modern principles of mechan-
ics that still serve humanity well today.

The deficiencies of this article are numerous. It is
perhaps placed in too smooth a narrative, implying
the development of dynamics occurred along a single
timeline, but that is emphatically not the case. For
example, although the article transitions from Galileo
to Newton, it is wholly unclear if Newton benefited
from Galileo’s work. Were the essay rather to have
looked to Newton’s inspiration, it would more likely
have looked back to Apollonius of Perga, and how his
works were used by Newton. Such an article would
be of a wholly different nature to the one presented
here, which attempted to bring a short and reasonably
concise history to a new audience.
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