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Abstract

A novel promising bootstrap subspace system identification algorithm for both open and closed loop
systems is presented. An outline of the SSARX algorithm by Jansson (2003) is given and a modified
SSARX algorithm is presented. Some methods which are consistent for closed loop subspace system
identification presented in the literature are discussed and compared to a recently published subspace
algorithm which works for both open as well as for closed loop data, i.e., the DSR e algorithm as well as
the new bootstrap subspace method presented in this paper. Experimental comparisons are performed by
Monte Carlo simulations.
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1. Introduction

Noticing that if the states of a linear dynamic system
are known then the problem of finding the model matri-
ces is a linear regression problem, see e.g., Overschee
and de Moor (1996). Some methods for closed loop
subspace identification with state estimation along the
lines of the higher order ARX model approach pre-
sented in Ljung and McKelvey (1995) are presented
in Jansson (2003, 2005) and Chiuso (2007a,b). In this
class of algorithms the states are estimated in a prelim-
inary step and then the model matrices are estimated
as a linear regression problem.

In Ljung and McKelvey (1995) a method denoted
SSNEW with MATLAB m-file code is presented. In
Jansson (2003) a method denoted SSARX was pre-
sented, and in Jansson (2005) a three step method de-
noted NEW is presented. In Chiuso and Picci (2005)
the “whitening filter” algorithm, (in later papers de-
noted PBSID), is introduced, which is a variant of
the SSARX algorithm by Jansson (2003). In Chiuso
(2007a) the PBSID method is discussed further and

an optimized version PBSID opt presented. In Chiuso
(2007b) the PBSID and PBSID opt methods are fur-
ther analyzed, and it is shown some asymptotic simi-
larities with the SSARX and the PBSID algorithms. It
is also shown that the PBSID opt algorithm is a row
weighted version of the SSNEW algorithm in Ljung and
McKelvey (1995). Furthermore, Chiuso (2007b) stated
that the PBSID opt algorithm is found to be asymp-
totically variance efficient on many examples but not
in general. Based on this, it make sense to consider
the PBSID opt algorithm and investigate its behavior
relative to the other algorithms.

On the other hand there are subspace methods which
are based on matrix equations in which the states are
eliminated and instead based on projections in order
to estimate a subspace for the extended observability
matrix and then to estimate the Markov parameters of
the system. The PARSIM-E (Qin and Ljung (2003),
Qin et al. (2005) and DSR (Di Ruscio (1996), DSR e
(Di Ruscio (2008, 2009)) methods may be viewed as
subspace methods of this class which are based on ma-
trix equations where the states are eliminated from the
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problem.
The PARSIM-E method was compared against the

DSR e method in Di Ruscio (2000) and not found to be
comparable with respect to the low variance estimates
from DSR e algorithm.

It would be of interest to compare the state
based subspace algorithms, SSNEW, SSARX and
PBSID opt, with the DSR e algorithm, in particular
for systems with a low signal to noise ratio. This is one
of the topics investigated in this paper. The SSNEW
m-file in the original paper by Ljung and McKelvey
(1995) would be a natural starting point in this work.

In the literature on closed loop subspace system iden-
tification, the methods are usually always investigated
by numerical experiments with reference signals equal
to a white noise signal, leading to examples of systems
with a high signal to noise ratio. Jansson (2005) pre-
sented an example where the reference signal is white
Gaussian noise with unit variance, the same example is
used in Jansson (2003), also with the same white refer-
ence signal. In Chiuso (2007b) several examples where
presented, all with white reference signals. Many meth-
ods perform almost equally well for systems with a high
signal to noise ratio, and where the reference signal is
white noise. In order to distinguish methods and in
order to find the most superior of the published meth-
ods, one obvious option is to compare the methods on
systems with a moderate to low signal to noise ratio,
subject to an informative input experiment. Also most
practical input and reference experiments are gener-
ated by binary or pseudo random binary experiments.

MATLAB m-file software for DSR e and PBSID opt
are available from the internet. An m-file for the
SSNEW algorithm is available in the original paper
by Ljung and McKelvey (1995), and used with minor
modifications. Software implementation of the SSARX
algorithm has not been available so an own Matlab
m-file function has been implemented, available upon
request.

The contributions of this paper are itemized as fol-
lows.

• For the closed loop subspace methods where
MATLAB m-file software are available, SSNEW,
PBSID opt and DSR e, we only give a short re-
view of the methods with the motivation to give a
presentation of the methods before using them in
Section 8 of numerical Monte Carlo simulations.

• Since m-file software is not available for the
SSARX algorithm we give a detailed description
of this algorithm with the motivation of writing
an efficient m-file implementation of it.

• After presenting the SSARX algorithm, Jansson
(2003), we present a new modified SSARX algo-

rithm, denoted SSARX mod. In this modification
we exclude an intermediate linear regression step
and instead use one single projection in order to
compute a basis for the states. This algorithm
also includes one QR and one SVD decomposition.
Furthermore, observing that the residual of this
projection is the future innovations, we use the
first of these innovations as known and solve the
Kalman filter on innovations form for the model
matrices, e.g. treat the innovations form model
as a deterministic system in which the predicted
states, the inputs, the innovations and the outputs
are known. This is the same idea as is used in the
DSR e algorithm.

• The modified SSARX algorithm denoted
SSARX mod presented in this paper has been
found to produce parameter estimates with lower
variance than the corresponding estimates from
the recently published ARX based subspace
identification algorithm PBSID opt in Chiuso
(2007b), on some hard examples with a low signal
to noise ratio.

• With the modified SSARX method at hand we
propose a new bootstrap subspace identification
algorithm denoted SSARX mb. The first step in
this algorithm is to estimate the model matrices
with the SSARX mod algorithm and then perform
a few bootstrap iterations with the SSARX mb
algorithm. This algorithm results in a supe-
rior bootstrap subspace algorithm as shown in
Section 8 of numerical Monte Carlo simulations.
The bootstrap subspace identification algorithm
SSARX mb seems to produce parameter estimates
with approximately the same variance as the cor-
responding estimates from the DSR e algorithm
and our Monte Carlo simulation experiments in-
dicate that they are “close” to asymptotic equiv-
alent.

• Monte Carlo simulation experiments, on two ex-
amples, are presented which show that the DSR e
algorithm performs better than the SSNEW,
SSARX, PBSID opt and SSARX mod algorithms,
i.e. produce parameter estimates with lower vari-
ance, for closed loop subspace system identifica-
tion, on two examples with low signal to noise ra-
tios.

• From the Monte Carlo simulation experiments we
illustrate the efficiency of the modified SSARX al-
gorithms, e.g., SSARX mod, and in partiucular
the bootstrap method SSARX mb, compared to
the SSARX method in Jansson (2003). The boot-
strap subspace algorithm, SSARX mb produced
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parameter estimates close to DSR e and PEM for
closed loop data.

• Finally we present a Monte Carlo simulation ex-
periment with the reference signal equal to a white
noise signal, resulting in a system with a high sig-
nal to noise ratio. For this example the behavior
of the algorithms, SSNEW, SSARX, PBSID opt,
SSARX mod and DSR e are about the same. In-
terestingly, for this example the PEM algorithm
in MATLAB has convergence problems and pro-
duced the worst results.

• Interestingly, the DSR e algorithm is on these two
examples, i.e on the examples with a low signal to
noise ratio, shown to give as efficient parameter
estimates as the Prediction Error Method (PEM).

The contributions in this paper are believed to be of
interest for the search for an optimal subspace identi-
fication algorithm for open and closed loop systems.

The rest of this paper is organized as follows. In Sec-
tion 2 the problem definition is given and some prelim-
inary notations and matrix notations used in the paper
are presented in Section 3. In Section 4 the higher or-
der ARX model identification problem as well as the
SSARX algorithm by Jansson (2003) are investigated
in detail. Based on the review of the SSARX algorithm
a modified SSARX algorithm is presented in Section 5.
A novel bootstrap subspace system identification algo-
rithm is presented in Section 6. An outline of some
other subspace algorithms for closed loop systems are
presented in Section 7. Some numerical Monte Carlo
simulation examples are given in Section 8 and finally
some concluding remarks follow in Section 9.

2. Problem formulation

We consider linear state space dynamic models of the
form

xk+1 = Axk +Buk + Cek, (1)

yk = Dxk + Euk + Fek, (2)

with x0 as the initial predicted state and where a series
of N input and output data vectors uk and yk ∀ k =
0, 1, . . . , N − 1 are known, and where there is possible
feedback in the input data. In case of output feedback
the feed through matrix is zero, i.e. E = 0. Also
for open loop systems the feed through matrix may be
zero. We will include a structure parameter g = 0 in
case of feedback data or for open loop systems in which
E = 0, and g = 1 for open loop systems when E is to
be estimated. Furthermore, for the innovations model,
eqs. (1-2), ek is white with unit covariance matrix, i.e.
E(eke

T
k ) = I .

Note that corresponding to the model defined by
eqs. (1-2) on innovations form we may, if the system
is not pure deterministic, define the more common
Kalman filter on innovations form by defining the in-
novations as εk = Fek and then K = CF−1 is the
Kalman filter gain. Hence, the Kalman filter on inno-
vations form is defined as

xk+1 = Axk +Buk +Kεk, (3)

yk = Dxk + Euk + εk, (4)

where the innovations process εk have covariance ma-
trix E(εkε

T
k ) = FFT .

The quintuple system matrices (A,B,C,D,E, F )
and the Kalman filter gain K are of appropriate di-
mensions. The problem addressed in this paper is to
determine these matrices from the known data. Both
closed and open loop systems are addressed.

One should note that from eqs. (3-4) we find the
Kalman filter prediction model as

xk+1 = (A−KD)xk + (B −KE)uk +Kyk, (5)

yk = Dxk + Euk + εk. (6)

This Kalman filter prediction model is used in most of
the state based subspace identification algorithms.

3. Preliminary theory and
definitions

3.1. Basic matrix definitions

The special structure of a Hankel matrix as well as
some matching notations, which are frequently used
throughout the paper, are defined in the following.

Given a vector sequence

sk ∈ Rnr ∀ k = 0, 1, 2, . . . , (7)

where nr is the number of rows in sk.

Define integer numbers j, i and nc and define the
matrix Sj|i ∈ Rinr×nc as follows

Sj|i
def
=


sj sj+1 sj+2 · · · sj+nc−1

sj+1 sj+2 sj+3 · · · sj+nc
...

...
...

. . .
...

sj+i−1 sj+i sj+i+1 · · · sj+i+nc−2

 ,
which is defined as a Hankel matrix because of the spe-
cial structure. A Hankel matrix is symmetric and the
elements are constant across the anti-diagonals. The
integer numbers j, i and nc have the following inter-
pretations:
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• j is the start index or initial time in the sequence
used to form Sj|i, i.e., sj , is the upper left vector
element in the Hankel matrix.

• i is the number of nr-block rows in Sj|i.

• nc is the number of columns in the Hankel matrix
Sj|i.

One should note that this definition of a Hankel ma-
trix Sj|i is slightly different to the notation used in
Overschee and de Moor (1996) (pp. 34-35) where the
subscripts denote the first and last element of the first
column in the block Hankel matrix, i.e. using the nota-
tion in Overschee and de Moor (1996) a Hankel matrix
U0|i is defined by putting u0 in the upper left corner
and ui in the lower left corner and hence U0|i would
have i+ 1 rows.

Examples of such vector processes, sk, to be used in
the above Hankel-matrix definition, are the measured
process outputs, yk ∈ Rm, and possibly known inputs,
uk ∈ Rr.

Some basic matrix definitions used in connection
with subspace methods are given as follows.

The extended observability matrix, Oi, for the pair
(D,A) is defined as

Oi
def
=


D
DA
...
DAi−1

 ∈ Rim×n, (8)

where the subscript i denotes the number of block rows.
The reversed extended controllability matrix, Cdi , for

the pair (A,B) is defined as

Cdi
def
=
[
Ai−1B Ai−2B · · · B

]
∈ Rn×ir, (9)

where the subscript i denotes the number of block
columns. A reversed extended controllability matrix,
Csi , for the pair (A,C) is defined similar to eq. (9), i.e.,

Csi
def
=
[
Ai−1C Ai−2C · · · C

]
∈ Rn×im, (10)

i.e., with B substituted with C in eq. (9). The lower
block triangular Toeplitz matrix, Hd

i ∈ Rim×(i+g−1)r ,
for the quadruple matrices (D,A,B,E).

Hd
i

def
=


E 0m×r 0m×r · · · 0m×r
DB E 0m×r · · · 0m×r
DAB DB E · · · 0m×r
...

...
...

. . .
...

DAi−2B DAi−3B DAi−4B · · · E


where the subscript i denotes the number of block rows
and i+g−1 is the number of block columns, and where

0m×r denotes the m × r matrix with zeroes. A lower
block triangular Toeplitz matrix Hs

i ∈ Rim×im for the
quadruple (D,A,C, F ) is defined as

Hs
i

def
=


F 0m×m 0m×m · · · 0m×m
DC F 0m×m · · · 0m×m
DAC DC F · · · 0m×m
...

...
...

. . .
...

DAi−2C DAi−3C DAi−4C · · · F


Given two matrices A ∈ Ri×k and B ∈ Rj×k, the

orthogonal projection of the row space of A onto the
row space of B is defined as

A/B = ABT (BBT )†B, (11)

where † denotes the More-Penrose pseudo-inverse of a
matrix. The following property is used

A/

[
A
B

]
= A. (12)

Proof of eq. (12) can be found in e.g., Di Ruscio (1997).

3.2. Basic matrix equations

The following matrix equation relates the future states,
XJ|1, to the past data matrices, U0|J and Y0|J , i.e.,

XJ|1 =
[
C̃dJ C̃sJ

] [ U0|J
Y0|J

]
+ (A−KD)JX0|1, (13)

where the “future” states are defined as XJ|1 =[
xJ xJ+1 · · · xN−(J+L)

]
, where C̃sJ = CsJ(A −

KD,K) is the reversed extended controllability matrix
of the pair (A−KD,K), and C̃dJ = CdJ(A−KD,B −
KE) is the reversed extended controllability matrix of
the pair (A−KD,B−KE), and where CdJ and CsJ are
defined in eqs. (9-10), respectively.

Notice also the following common matrix equation
in the theory of subspace system identification, i.e.

YJ|L = OLXJ|1 +Hd
LUJ|L+g−1 +Hs

LEJ|L. (14)

Eq. (14) is derived from the Kalman filter model on
innovations form, eqs. (1-2). A variant of eq. (14) is
found from eqs. (5-6) but then with EJ|L in eq. (14)
replaced by the innovations Hankel matrix εJ|L, and
a Toeplitz matrix Hs

L defined by using A := A−KD,
F := 0m×m and C := K, and the corresponding Hankel
matrix Hd

L defined similarly. This variant of eq. (14)
is used in Jansson (2003) and presented in Section 4.2,
eq. (21).

Eq. (13) was used in Di Ruscio (2003) and may be
proven from the Kalman filter state prediction eq. (5).
This equation is also used in other state based subspace
identification methods, e.g. Jansson (2003).
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4. On ARX based subspace
identification

We will in this section first discuss the relationship be-
tween a general linear state space model on innova-
tions form as in eqs. (3-4), and the relationship be-
tween a higher order ARX regression problem and how
the Markov parameters of the system, as well as the
system parameters, may be extracted. These estimates
are used as a pre-estimation step in e.g., Jansson (2003)
and Ljung and McKelvey (1995). Furthermore we will
discuss the SSARX algorithm by Jansson (2003) in
some detail. Based on this a modified SSARX algo-
rithm is presented in the next Section 5 with an effi-
cient implementation of it, leading to a MATLAB m-
file available upon request.

4.1. Higher order ARX model with model
reduction

It is well known that a general linear state space model
on innovations form may be identified from a higher
order ARX model followed by model reduction. As a
reference of this we mention a quote from Ljung (1999)
on p. 336, “This means that a high order ARX model is
capable of approximating any linear system arbitrarily
well.”

A “large” past horizon parameter J is specified such
that (A − KD)J ≈ 0. We then have the input and
output ARX model

yk = A1yk−J + · · ·+AJyk−1

+B1uk−J + · · ·+BJuk−1 + εk =∑J
i=1Aiyk−(J+1−i) +

∑J
i=1Biuk−(J+1−i) + εk,(15)

where Ai ∈ Rm×m and Bi ∈ Rm×r ∀ i = 1, . . . , J are
matrices with system parameters to be estimated. We
only consider the case with a delay of one sample, i.e.
without the direct feed through term (E = 0).

From the observed data and the input output ARX
model eq. (15), form the higher order Ordinary Least
Squares (OLS) or ARX regression problem

YJ|1 = θ

[
Y0|J
U0|J

]
+ εJ|1, (16)

where the parameter matrix, θ ∈ Rm×J(m+r), is related
to the ARX model parameters, as follows

θ =
[
A1 · · · AJ B1 · · · BJ

]
, (17)

and to the Markov parameters of the Kalman filter
prediction model as

θ = D
[
C̃sJ C̃dJ

]
, (18)

when J →∞. This means that Ai = D(A−KD)J−iK
and Bi = D(A−KD)J−iB ∀ i = 1, . . . , J in this case.
This regression problem is effectively solved through a
LQ (transpose of QR problem) factorization.

We have some possibilities for computing the actual
model matrices, if needed.

Notice that the ”multivariate” higher order ARX
model eq. (16) may be formulated as a ”univari-
ate” ARX model using that stacking each column in
the product of three matrices, AXB, (of appropriate
dimensions) onto each other, i.e. using the formula
vec(AXB) = (BT ⊗ A)vec(X), then eq.(16) may be
formulated as a ”univariate” OLS problem, i.e.,

vec(Y TJ|1) = (Im×m ⊗WT
p )vec(θT ) + vec(εTJ|1), (19)

or equivalently

vec(YJ|1) = (WT
p ⊗ Im×m)vec(θ) + vec(εJ|1), (20)

where Wp is a concatenated matrix of the ”past” data
Hankel matrices Y0|J and U0|J , also defined later on in
eq. (26). Here ⊗ is the Kronecker product. This means
that the ”optimal” univariate Partial Least Squares
(PLS) algorithm, see e.g., Di Ruscio (2000), may be
used in order to solve the higher order ARX problem
in cases when the matrix WpW

T
p is ill-conditioned.

Option 1: From the parameters in this higher or-
der ARX model we may construct a non minimal state
space model of order mJ . Following with model reduc-
tion by using Hankel matrix realizations we may find a
model with the correct system order, 1 ≤ n ≤ mJ .
This strategy is the same as used for solving a de-
terministic identification problem in section 6.2 in Di
Ruscio (2009), i.e. using J := L in that algorithm.
A method based on this approach is capable of pro-
ducing correct estimates for deterministic systems even
for a relatively small past horizon parameter J , and
the reason for this is that the ARX model parameters
are used. Using this strategy directly, based on Monte
Carlo simulation experiments, it is found to give unre-
liable estimation results, in particular for systems with
a low signal to noise ratio, and not comparable with
the corresponding results from the DSR e algorithm.
Option 2: Another option is to use the estimate

of the Markov parameters of the Kalman filter predic-
tion model, i.e., construct D(A − KD)i−1

[
B K

]
∀ i = 1, . . . , J from the estimated parameter vector
θ by using the relationship given by eq. (18). These
Markov parameters (impulse responses) are used in the
SSARX method by Jansson (2003) as a pre-estimation
step for the Markov parameters, in order to overcome
the correlation problem in closed loop systems, as we
will illustrate in the next subsection 4.2.

It is also possible to use Hankel matrix realization
theory, Ho and Kalman (1966), Zeiger and McEwen
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(1974), with these Markov parameters and then find-
ing a realization for the Kalman filter predictor model
matrices A−KD, B, K and D and then finally com-
puting A from A − KD with known D and K. In
this strategy the past horizon has to be chosen large
in order for (A − KD)J to be negligible, even for a
deterministic system, and the reason for this is that
θ = D

[
C̃sJ C̃dJ

]
in eq. (18) only when J is large,

i.e. J →∞.
In practice, many subspace methods based on the

higher order ARX approach discussed in this section
are believed to only work satisfactorily for systems with
white noise reference signals or experiments, and for a
relatively “large” past horizon parameter J . Our view
on this is that such methods may not produce efficient
parameter estimates in general. This is also found from
numerous simulation experiments, and this approach
is out of range in comparison with the results from
both DSR e and PEM, for systems with a relatively
low signal to noise ratio, and therefore not considered
further.

For another view and discussion of a similar ap-
proach is the Higher Order ARX (HOARX) strategy
in Qin and Ljung (2006), where also two numerical ex-
amples with high past horizons J = 10 and J = 20 and
white reference signals are presented.

4.2. The SSARX method

An outline of the SSARX method by Jansson (2003)
is given in the following. However, one should note
that a variant of SSARX denoted NEW is presented
in Jansson (2005). The differences with SSARX and
NEW is pointed out in Section 4.3.

The first step in the SSARX method is to identify
a higher order ARX model, i.e., equivalent to the re-
gression problem in eq. (16), and then use the Markov
parameter estimates in eq. (18) to form the Toeplitz
matrices H̃d

L and H̃s
L in the matrix equation

YJ|L = ÕLXJ|1 + H̃d
LUJ|L+g−1 + H̃s

LYJ|L−1 + εJ|L. (21)

Note that this matrix equation is obtained from the
Kalman filter prediction model, eqs. (5-6). The ex-
tended observability matrix of the pair (D,A −KD),
i.e. ÕL = OL(A − KD,D), is defined as in eq. (8).
The Toeplitz matrices H̃d

L = Hd
L(A−KD,B−KE,D)

and H̃s
L = Hs

L(A − KD,K,D) have the same struc-
ture as Hd

L and Hs
L defined in Section 3.1 with matrix

definitions, respectively. Note that we use F = 0 and
E = 0 for closed loop systems, in the definitions of the
Toeplitz matrices.

One problem in case of closed loop data is that the
innovations noise term, εJ|L, is correlated with the fu-
ture Hankel matrices UJ|L+g−1 and YJ|L−1 but since

the Toeplitz matrices are known one may form the re-
gression problem

ỸJ|L =

θ̃︷ ︸︸ ︷
ÕL
[
C̃dJ C̃sJ

] [ U0|J
Y0|J

]
+ εJ|L, (22)

where the left hand side in the regression problem,
ỸJ|L, is known and given by

ỸJ|L = YJ|L − H̃d
LUJ|L+g−1 − H̃s

LYJ|L−1. (23)

Eq. (22) is found by using eq. (13) in eq. (21) with J →
∞, and the future states XJ|1 is related to the past

data Hankel matrices as XJ|1 =
[
C̃dJ C̃sJ

] [ U0|J
Y0|J

]
.

From this regression problem we find an estimate,
ˆ̃
θ,

of the matrix

θ̃ = ÕL
[
C̃dJ C̃sJ

]
. (24)

For the sake of completeness, θ̃ is computed as the OLS
estimate

ˆ̃
θ = ỸJ|LWp(WpW

T
p )−1, (25)

where

Wp =

[
U0|J
Y0|J

]
. (26)

In Jansson (2003) canonical correlation analysis is used
as described in Appendix A. Here we illustrate with
SVD and the difference is minor from our simulation
experiments. Following by a SVD of this matrix, i.e.,

ˆ̃
θ = USV T ≈ U1S1V

T
1 , (27)

where U1 = U(:, 1 : n), S1 = S(1 : n, 1 : n) and
V1 = V (:, 1 : n). This gives estimates ÕL = U1 and[
C̃dJ C̃sJ

]
= S1V

T
1 if an output normal realization

is chosen. If not known in advance, the system order,
n, may be taken as the number of non-zero singular
values in S.

Then finally an estimate of the states is constructed
as follows

X̂J|1 =
[
C̃dJ C̃sJ

] [ U0|J
Y0|J

]
= S1V

T
1

[
U0|J
Y0|J

]
. (28)

The last part of the SSARX algorithm is to find the
model matrices A, B, K and D from the Kalman filter
on prediction form, eqs. (3-4), as presented in Jansson
(2003, 2005), as follows. The output matrix estimate

D̂ = yJ|1X
T
J|1(XJ|1X

T
J|1)−1, (29)
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and the innovations as the residual of this regression,
i.e.,

εJ|1 = yJ|1 − yJ|1/XJ|1, (30)

and A, B and K from the regression problem

XJ+1|1 =
[
A B K

]  XJ|1
uJ|1
εJ|1

 . (31)

An assumption in this algorithm is that the past
horizon, J , is large so that the term (A−KD)J is neg-
ligible. Hence, this algorithm would be biased for finite
J . However, the method is producing correct estimates
in the deterministic noise free case and it is a nice ex-
ample of an algorithm utilizing a pre-estimation step in
order to formulate the right hand side ỸJ|L in eqs. (22-
23), i.e. an higher order ARX regression problem is
used, in order to estimate the Markov parameters of
the Kalman filter on prediction form.

The SSARX algorithm is found to be asymp-
totic equivalent with the PBSID algorithm in Chiuso
(2007b) where also an optimized version, PBSID opt,
algorithm is presented. A short view on this algorithm
is given in Section 7.3.

Noticing that the regression problem, eqs. (22) and
(25), for the parameter matrix θ̃ is actually not needed,
we propose an alternative more efficient SSARX imple-
mentation in the next Section 5.

4.3. Discussion

From the higher order ARX regression problem it is
possible to find the model matrices A,B,D directly. It
is therefore also possible to form the regression problem

YJ|L −Hd
LUJ|L−1 =

OL
[
C̃dJ C̃sJ

] [ U0|J
Y0|J

]
+Hs

JEJ|L, (32)

which may be an alternative to the method in Jansson
(2003). However, this choice is not found to improve
the estimates from Monte Carlo simulations.

One should note that a variant of SSARX denoted
NEW is presented in Jansson (2005). The algorithm
denoted, NEW, is a three step method. Constraints
are included in the 1st step regression problem, i.e.
eq. (21) with the future states taken from eq. (13), is
considered as a linear regression problem in the matri-
ces OL

[
C̃dJ C̃sJ

]
, and the Toeplitz matrices H̃d

L and

H̃s
L are constrained to be block lower triangular. In the

2nd step initial estimates of ÕL and
[
C̃dJ C̃sJ

]
, are

computed through canonical correlation analysis be-
tween the future and the past, as in Appendix A. In
the 3rd step one returns to the regression problem in

the first step and finds updated estimates of ÕL and[
C̃dJ C̃sJ

]
. This is described to be equivalent to tak-

ing a Newton step. Finally the states are computed.
This is, as we understand it, the main difference com-
pared to the SSARX method, in which H̃d

L and H̃s
L

are estimated from the preliminary higher order ARX
problem as is described in Sections 4.2 and 4.1.

5. Modified SSARX algorithms

We will in this section discuss an alternative imple-
mentation of the SSARX method which is found su-
perior to the SSARX algorithm in Section 4.2. This
results in a new modified SSARX algorithm, denoted
SSARX mod.

5.1. Modified SSARX algorithm

If a pre-estimated model or Markov parameters are
not known in advance, we use the same higher or-
der ARX/OLS regression problem as initially in the
SSARX method by Jansson (2003), i.e., solving the re-
gression problem eq. (16) with parameters related to
the Markov parameters as in eq. (18). Hence, pre-
estimated Toeplitz matrices H̃d

L and H̃s
L are known in

advance.
From eq. (21) we have

ỸJ|L︷ ︸︸ ︷
YJ|L − H̃d

LUJ|L+g−1 − H̃s
LYJ|L−1 = ÕLXJ|1 + εJ|L. (33)

From this we find the projection equation

ZJ|L = ÕLXJ|1, (34)

where

ZJ|L = ỸJ|L/

[
U0|J
Y0|J

]
, (35)

and ỸJ|1 is defined in eq. (23), i.e. the left hand side
of eq. (33). In order to prove this we use that

XJ|L = XJ|L/

[
U0|J
Y0|J

]
, (36)

when J → ∞. Notice also eq. (13) in this connec-
tion. Instead of using an SVD of the “large” basis ma-
trix, ZJ|L, (which is possible but time consuming), for
the states we propose the following LQ decomposition
(transpose of QR decomposition), i.e.

ZJ|L = RQ. (37)

Following by an SVD

R = USV T ≈ U1S1V
T
1 , (38)
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where U1 = U(:, 1 : n), S1 = S(1 : n, 1 : n) and V1 =
V (:, 1 : n). The system order may be taken as the
number of non-zero singular values in S. This gives
the following estimate of the states, i.e.,

X̂J|1 = S1V
T
1 Q. (39)

One should here note that the future horizon has to
be chosen such that the system order is bounded by
1 ≤ n ≤ mL.

The model matrices are found similar to the SSARX
algorithm in Section 4.2, i.e. as in eqs. (29) and
(31). This modified SSARX algorithm is denoted
SSARX mod1 and used in the Monte Carlo simulations
in Section 8.

5.2. Modified SSARX algorithm using the
innovations

One should now observe that the residual of the projec-
tion problem, eqs. (33-34), gives the following estimate
of the future innovations

εJ|L = ỸJ|L − ỸJ|L/
[
U0|J
Y0|J

]
. (40)

This indicates an alternative implementation of the al-
gorithm, i.e., in addition using the innovations as in Di
Ruscio (2008, 2009). An alternative recursive compu-
tation procedure for the future innovations is presented
in Qin and Ljung (2003).

Instead of computing the model matrices as in Jans-
son (2003, 2005) we also use the innovations, eq. (40),
in addition to the state estimates, eq. (39). Hence,
we propose to solve a deterministic problem, as in the
DSR e algorithm. However, here we use the state es-
timates and an estimate of the output matrix is taken
as (when E = 0, i.e. no direct feed-through term)

D̂ = (yJ|1 − εJ|1)XT
J|1(XJ|1X

T
J|1)−1, (41)

and the innovation, εJ|1, is taken as the first block row
in the innovations estimate, eq. (40). Furthermore A,
B and K are computed from the regression problem
similar as in the SSARX algorithm eq. (31), i.e.,

XJ+1|1 =
[
A B K

]  XJ|1
uJ|1
εJ|1

 . (42)

This last modified SSARX algorithm is denoted
SSARX mod2 and used in the Monte Carlo simulations
in Section 8. The differences in these modified SSARX
algorithms and the SSARX algorithm presented in Sec-
tion 4.2 are virtually small, but may be seen as major
from the Monte Carlo simulations in Section 8.

5.3. Discussion

The main differences in the new modified SSARX
method, denoted SSARX mod, and the original
SSARX method by Jansson (2003) are itemized as fol-
lows:

• In the first instance we skip the regression step
eq. (27) and hence, we do not compute the pa-
rameter matrix given by eq. (24). Instead we use
a single projection in order to compute a basis for
the state, eqs. (34-35) and (37).

• In Jansson (2003) the output matrix, D, is com-
puted from a regression problem of the output
equation, as in eq. (29) and the innovations εJ|1
(needed in order to find A, B and K from the state
equation) as the residual of this regression, as in
eq. (30).

Instead we find the future innovations, εJ|L, di-
rectly from the residual of the projection described
in the first item, i.e. as in eq. (40), and use the
first block row, εJ|1 as known in the last regression
problem for the model matrices as in eqs. (41-42).

Remark 5.1 Based on the observations in this section
we propose a bootstrapping subspace system identifica-
tion algorithm in the next Section 6. Observing that
the initial higher order ARX identification problem for
the Markov parameters used to define the Toeplitz ma-
trices H̃d

L and H̃s
L actually is not needed if the model

matrices are known or estimated from other algorithms.
This bootstrapping method seems to converge in a few
iterations.

6. A novel bootstrap subspace
algorithm

The higher order ARX regression pre-estimation step
used in many subspace identification algorithms, e.g.
as in Ljung and McKelvey (1995), Jansson (2003),
Chiuso (2007b), for estimating the Markov parame-
ters (impulse responses) of the Kalman filter predic-
tion model may be ill-conditioned, in particular for sys-
tems with a low signal to noise ratio. This may be one
reason for the increased variances in the estimates for
some colored reference signals used. This is observed
from our Monte Carlo simulations, see e.g. the exam-
ples in Section 8 and the examples in Di Ruscio (2009)
where one observed “high” variance estimates from the
PARSIM-E algorithm by Qin and Ljung (2003); Qin
et al. (2005).

One idea of this section is to relax the higher or-
der ARX regression problem and instead start with
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another initial model at hand, e.g. the zero model
A0 = 0, B0 = 0, D0 = 0 and K0 = 0. Then we obtain
the projection approximate equation (for convenience
with the further presentation, also define a first iterate
index i = 1)

ZJ|L(i− 1) := ÕLXJ|1(i), (43)

where the matrix ZJ|L(i− 1) is obtained by projecting
the row space of the “future” Hankel matrix, YJ|L, onto
the row space of the “past” input and output Hankel
matrices U0|J and Y0|L, respectively, i.e.,

ZJ|L(i− 1) := YJ|L/

[
U0|J
Y0|J

]
, (44)

where the projection, “/”, operator is defined in
eq. (11). Also compute the innovations estimate as
the residual of this projection, i.e.

εJ|L(i− 1) := YJ|L − YJ|L/
[
U0|J
Y0|J

]
. (45)

From eq. (43) we obtain the state estimate

XJ|1(i) := S1V
T
1 Q, (46)

where Q is computed from the QR decomposition as
in eq. (37) and S1 and V1 from the SVD in eq. (38).
From the estimated state sequence in eq. (46) we obtain
a new model, Ai, Bi, Di and Ki from the regression
problems given by eqs. (41-42). With this new model
at hand the above procedure may be repeated, i.e.,
putting i := i+ 1 and replace YJ|L in eqs. (44-45) with

ỸJ|L(i− 1) given as the left hand side of eq. (33). This
illustrates the first iteration for i = 1 in the Algorithm
6.1 to be presented below.

It is remarkable that this iterative algorithm has
been found, on our Monte Carlo simulation examples in
Section 8, to converge within a few iterations 1 ≤ i ≤ ib
where it seems to be sufficient with ib = 2 or ib = 3
iterations. Other initial models may be used, e.g. the
Toeplitz matrices which are used in the SSARX algo-
rithm by Jansson (2003), or other initial models. This
is further discussed in and after the Algorithm 6.1 be-
low.

At each iteration only an orthogonal projection for
a basis for the states, and a least squares regression
problem for the model matrices, are computed. We will
denote this procedure for a bootstrap subspace identifi-
cation method, similar as the presentation of bootstrap
methods in Ljung (1999) p. 334.

Based on the above description we propose a novel
bootstrap subspace identification method with outline
as in Algorithm 6.1 below.

Algorithm 6.1 (Bootstrap subspace method)

Step 0: i = 0.
We suggest two options for initializing the boot-
strap subspace algorithm. Chose one of the follow-
ing:

1. Find initial estimates of the Toeplitz matri-
ces, H̃d

L(i = 0) and H̃s
L(i = 0), from e.g. the

higher order ARX/OLS regression problem in
eq. (16) where the ARX model parameter ma-
trix, θ, is related to the Markov parameters as
in eq. (18).

2. Chose an initial “zero” model, i.e., H̃d
L(i =

0) = 0 and H̃s
L(i = 0) = 0, i.e., starting from

a zero model A = 0, B = 0, D = 0 and
K = 0, or from some other a-priori specified
model.

Here index i is the bootstrap iteration index.
Choosing a few bootstrap iterations, e.g. ib = 2
or ib = 3 and the following algorithm seems to
converge rapidly. Put i := 1 and go to Step 2 in
this algorithm.

Step 1: 1 ≤ i ≤ ib. From some initial known model
matrices Ai−1, Bi−1, Di−1,Ki−1 form the Toeplitz
matrices

H̃d
L(i− 1) =

Hd
L(Ai−1 −Ki−1Di−1, Bi−1, Di−1), (47)

H̃s
L(i− 1) =

Hs
L(Ai−1 −Ki−1Di−1,Ki−1, Di−1), (48)

where Hd
L and Hs

L are defined as in Section (3.1).
Note that the last m block column in Hs

L is skipped
and that the matrix have 0m×m blocks on the di-
agonal. Similarly, the last r block column in Hd

L

is skipped when g = 0, i.e. for closed loop system
in which the direct feed-through term is zero, and
E = 0m×r on the block diagonal in this case.

Step 2: Compute from the modified SSARX algo-
rithm in Sections 5.1 and 5.2 an updated model
Ai, Bi, Di,Ki, e.g., computed by the SSARX mod2
algorithm, i.e., form the “future” corrected out-
puts,

ỸJ|L(i− 1) :=

YJ|L − H̃d
L(i− 1)UJ|L+g−1 − H̃s

L(i− 1)YJ|L−1.(49)

and then the projection of the “future” onto the
“past”

ZJ|L(i− 1) = ÕL(i)XJ|1(i), (50)

where

ZJ|L(i− 1) := ỸJ|L(i− 1)/

[
U0|J
Y0|J

]
, (51)
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The rest of this step of the algorithm is as described
by eqs. (37) and (42).

Step 3: if i < ib go to Step 1, else A := Aib ,
B := Bib , D := Dib and K := Kib and quit.

This bootstrap subspace identification algorithm is
denoted SSARX mb and used in Section 8 with number
of bootstrap iterations ib = 3 as default. (·) mb stands
for “modified” with “bootstrap” iterations.

The main idea of the algorithm is that instead of
using the pre-estimation problem in the SSARX al-
gorithm, i.e. instead of using the first higher or-
der regression Step 0 in the above algorithm, we in-
stead use the model estimates Ai−1, Bi−1, Di−1,Ki−1

from the previous Step 2 and perform a few iterations,
1 ≤ i ≤ ib, in order to compute the resulting model
matrices A := Aib ,B := Bib ,D := Dib and K := Kib .

The first Step 0 in this algorithm may be skipped
and an initial model may be taken from other algo-
rithms, or simply as the “zero” model as commented
upon below. This indicates possibilities for variants of
the algorithm.

On Example 8, the algorithm converged to the same
model, irrespective of initial model. This is good news,
because an iterative algorithm should preferably con-
verge to the optimal solution, irrespective of initial val-
ues. This is investigated further in Section 8 of exam-
ples, see e.g., Tables 4 and 5. However, it is well known
as described in Ljung (1999) on p.338 that e.g. the it-
erative prediction error method only is guaranteed to
converge to a local solution and to find the global solu-
tion one have to start the iterations at different feasible
initial values. On our MIMO Example 8.2 we observed
that local solutions of the bootstrap subspace identifi-
cation exists, and starting with a zero model for this
example resulted in a biased model. However, starting
with an initial model from the higher order ARX strat-
egy resulted in a unbiased model with approximately
as optimal parameter estimates as as the corresponding
PEM estimates. This is further documented in Exam-
ple 8.2.

Notice also that if ib = 1, only one bootstrap it-
eration, this algorithm is equivalent to the modified
SSARX method in Section 5, denoted SSARX mod, if
the initial model is taken from the higher order ARX
regression problem.

As far as we know there is no subspace system identi-
fication algorithm in the literature which utilizes boot-
strap iterations. The idea and the algorithm illustrated
in this section have been found to give superior pa-
rameter estimates compared to the original SSARX
method as well as the PBSID opt and SSNEW meth-
ods as illustrated in Section 8 of examples. The method
SSARX mb illustrated in this Section has strong sim-

ilarities with the DSR e algorithm and the parameter
estimates are close to the corresponding estimates from
DSR e. Monte Carlo simulation experiments indicate
also that the SSARX mb and DSR e algorithms are
close and possibly asymptotic equivalent.

The proposed bootstrap subspace algorithm should
probably (and as proposed in this work) be based on
the Kalman filter on prediction form, eqs. (5-6), and its
corresponding Hankel matrix eq. (21) or equivalently
eq. (33) since the predictor is stable, i.e., A−KD eigen-
values inside the unit circle. This is probably the main
reason for our observation that this bootstrap iteration
subspace algorithm indeed converges within a few iter-
ations, even for a zero initial model. Also remembering
that the Kalman filter itself and its corresponding con-
vergence properties in the sense that the covariance
matrix of the state estimation error is minimized. Fur-
ther convergence analysis of this bootstrap algorithm
should be performed, which is a topic for further re-
search.

Remark 6.1 We have found that we may chose the
initial model in Step 0 or Step 1 equal to zero, i.e.
choosing an initial model A0 = 0, B0 = 0, D0 = 0 and
K0 = 0 in Step 1 of the bootstrap Algorithm 6.1, seems
to give the same model after a sufficiently large number
of bootstrap iterations, ib, for some examples but not
in general.

This indicates that the preliminary higher order
ARX regression step in some subspace identification
algorithms may be unnecessary. This bootstrap sub-
space identification algorithm is promising and should
be further investigated, e.g. investigate if including a
row weighting in the projection eq. (50) is influencing
upon the variance, e.g., by using the CCA approach as
in Appendix A.

6.1. Additional details

The aim of this subsection is to present some details
and insight into the projections in the bootstrap Al-
gorithm 6.1. Notice that the central iteration in Algo-
rithm 6.1, i.e. eqs. (49)-(51) may be written as

ZJ|L(i− 1) = ÕL(i)XJ|1(i) = ỸJ|L(i− 1)/

[
U0|J
Y0|J

]
= YJ|L/

[
U0|J
Y0|J

]
−θm(i− 1)

[
UJ|L+g−1

YJ|L−1

]
/

[
U0|J
Y0|J

]
,

(52)

where the parameter matrix, θm(i− 1),

θm(i− 1) =
[
H̃d
L(i− 1) H̃s

L(i− 1)
]
. (53)
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is defined in terms of the Markov parameters of the
model matrices Ai−1, Bi−1, Di−1,Ki−1 from the previ-
ous iteration.

Note that eq. (49) may be more compactly written
as

ỸJ|L(i− 1) = ÕL(i)XJ|1(i) + εJ|L =[
−H̃d

L(i− 1) H̄s
L(i− 1)

]︸ ︷︷ ︸
θ̄m(i−1)

[
UJ|L+g−1

YJ|L

]
.

(54)

Here, H̄s
L is a modified Toeplizt matrix with the

Markov parameters of the stochastic part of the sys-
tem in the lower part and with identity matrices Im×m
on the diagonal, i.e.,

H̄s
L

def
=


I 0 · · · 0

−DK I · · · 0
...

...
...

−DĀL−2K −DĀL−3K · · · I

 , (55)

where we have defined Ā = A −KD for convenience.
Note also that H̄s

L = I − H̃s
L ∈ RLm×Lm and that the

term H̄s
L(i−1)YJ|L in Eq. (54) is equal to YJ|L−H̃s

L(i−
1)YJ|L−1 in Eq. (49).

Eq. (54) gives insight because it nicely shows
the data involved, i.e. the ”future” Hankel matrix[
UJ|L+g−1

YJ|L

]
and the ”past” Hankel matrix

[
U0|J
Y0|J

]
which is used to remove the future innovations, εJ|L.
Hence, at each iteration we have that a basis for the
states are computed as

ZJ|L(i− 1) = ÕL(i)XJ|1(i) =

θ̄m(i− 1)

[
UJ|L+g−1

YJ|L

]
/

[
U0|J
Y0|J

]
,

(56)

where the parameter matrix θ̄m is given by

θ̄m(i− 1) =
[
−H̃d

L(i− 1) H̄s
L(i− 1)

]
. (57)

Also notice that from Eq. (40) we have that the future
innovations are computed as

εJ|L = ỸJ|L(i− 1)− ỸJ|L(i− 1)/

[
U0|J
Y0|J

]
= θ̄m(i− 1)

[
UJ|L+g−1

YJ|L

] [
U0|J
Y0|J

]⊥
, (58)

where ()⊥ denotes the orthogonal compliment to the
matrix.

The above illustrate the central projections in the
iterations for i > 1.

We may also implement the bootstrap method, i.e.
Eqs. (56) and (58), with one QR decomposition for
computing the projections.

We have U0|J
Y0|J
ỸJ|L

 =

[
R11 0
R21 R22

] [
Q1

Q2

]
. (59)

from this we obtain the projections

ZJ|L(i− 1) = ÕLXJ|1 = R21Q1, (60)

εJ|L = R22Q2. (61)

An alternative which may be investigated is as follows.
From the following LQ (transpose of QR decomposition
we have)

U0|J
Y0|J
UJ|L+g−1

YJ|L

 =

[
R11 0
R21 R22

] [
Q1

Q2

]
. (62)

From this we have[
UJ|L+g−1

YJ|L

]
/

[
U0|J
Y0|J

]
= R21Q1, (63)

which is to be used in the projection for the states
Eq. (56) and[

UJ|L+g−1

YJ|L

] [
U0|J
Y0|J

]⊥
= R22Q2. (64)

This QR decomposition approach is an alternative to
the direct computations illustrated in the bootstrap
subspace system identification algorithm. Notice also
that this decomposition is performed once, prior to the
iterations in Algorithm 6.1.

7. Outline of some other subspace
methods

We will in this section give a short review of the closed
loop subspace system identification algorithms DSR e
(Di Ruscio (2008, 2009)), SSNEW (Ljung and McK-
elvey (1995)) and PBSID opt (Chiuso (2007b)). The
aim is not to go into deep details, and for this we re-
fer to the corresponding papers. The motivation is to
give a short presentation of the methods which are to
be compared by numerical Monte Carlo simulations in
the next Section 8 of examples.

7.1. The DSR e method

The DSR e method as discussed in Di Ruscio (2008,
2009) is a simple subspace algorithm. Below we give a
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short outline connected to the Monte Carlo comparison
experiment presented in this paper.

If the innovations process was known in addition to
the input and output data then we would have found
a perfect model. Having this in mind it would be of
interest to find an efficient way of estimating the inno-
vations process. An efficient estimate is as discussed
below.

The DSR e algorithm is linked to the higher order
ARX model approach in the first step of the algorithm.
However, instead of computing the model from the
higher order ARX model we only use the residual in
order to obtain an estimate of the innovations. This is
indeed a great difference which gives more numerically
reliable results.

Step 1 in the DSR e algorithm is as follows: For
“large” J the innovations sequence εJ|1 = FEJ|1 is
consistently estimated as

εJ|1 = FEJ|1 = YJ|1 − YJ|1/
[
U0|J
Y0|J

]
. (65)

Note that both the signal part, ydJ|1 = DXJ|1 = yJ|1−
εJ|1, and the innovation part, εJ|1, are used in the
dsr e algorithm.

Step 2 in the DSR e algorithm is a deterministic
identification problem. In Di Ruscio (2009) two op-
tions were presented.

One option is actually to construct a higher or-
der ARX model with future parameter L bounded
as 1 ≤ n ≤ mL, and then construct a higher order
state space model with system order mL followed by
model reduction by Hankel matrix realization, Ho and
Kalman (1966), Zeiger and McEwen (1974). This op-
tion is found to work properly if L is equal to the sys-
tem order (SISO) case but it will produce unreliable
results for increasing L, based on the Monte Carlo sim-
ulation experiment in Section 8. Hence, this option is
not considered further.

Solving the 2nd Step in the DSR e algorithm as a
deterministic identification problem as in Section 6.1 in
Di Ruscio (2009) is found to produce very promising
numerical results regarding variance and consistency.
This feature is in this paper illustrated in Section 8
with numerical Monte Carlo simulations.

7.2. The SSNEW method

Another algorithm essentially similar to the higher or-
der ARX model approach discussed in the above Sec-
tion 4.1 is the SSNEW method presented in the origi-
nal paper by Ljung and McKelvey (1995) where also an
m-file code script is presented, also used in Section 8.1
with numerical examples in this paper. This method
is further discussed in Ljung and McKelvey (1996).

The idea of the SSNEW method is to first estimate
the parameters of a higher order ARX model, e.g. as
in eq. (17), and thereafter construct future predictions
from this higher order ARX estimated model, and from
this form a basis for the states.

7.3. The PBSID opt method

In Chiuso (2007b) the Predictor Based Subspace IDen-
tification methods (PBSID) and the optimized version
PBSID opt are discussed. These methods are based
on constructing a basis for the state space from the
Kalman filter on prediction form. These methods be-
long to the class of methods which utilize the fact that
once the states are known then the model matrices are
found from a linear regression problem.

The PBSID algorithm was first presented in Chiuso
and Picci (2005) under the name “whitening filter algo-
rithm”. The “whitening filter algorithm” is also inves-
tigated in Qin and Ljung (2006) and where it is shown
that this algorithm is a bank of high order ARX models
in the regression step to extract the Markov parame-
ters. The PBSID algorithm was found to give asymp-
totically the same variance estimates as the CCA (also
denoted Canonical Variate Analysis (CVA)) algorithm
by Larimore (1983, 1990) in case of white inputs. In
case of colored non-white inputs the optimized PBSID
algorithm is presented in Chiuso (2007a), and it was
found that the PBSID opt algorithm perform better or
similar to the CCA algorithm in case of colored inputs.

It is in Chiuso (2007b) found that the PBSID and
SSARX method by Jansson (2003) are asymptotically
equivalent. The optimized version of PBSID, i.e. the
PBSID opt method, is using a weighted least squares
problem in order to estimate the predictors which are
used to form a basis for the state space, and this is one
difference from their original PBSID method. It is in
Chiuso (2007b) also found that the PBSID opt method
is a row weighted version of the SSNEW method by
Ljung and McKelvey (1995).

In the PBSID algorithm a basis for the state, satis-
fying a system similar to eq. (34), is solved from sev-
eral oblique projections (as in Overschee and de Moor
(1996)), i.e. considering each block row in eq. (33) at
a time. In the PBSID opt algorithm each block row
in YJ|L is solved for the corresponding block row in θ̃,
eq. (24), as a vectorized ordinary least squares prob-
lem, i.e., solving vec(YJ+i|1) ∀ i = 0, . . . , L− 1 for the
unknown parameters. The rest of these algorithms may
be performed similar as in the SSARX algorithm, Jans-
son (2003, 2005).

We have included the PBSID opt algorithm as one
of the methods to be compared by Monte Carlo simu-
lation in Section 8.1 of numerical examples.
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7.4. Discussion

In the SSNEW method by Ljung and McKelvey (1995)
a higher order ARX model is estimated in the first step.
The parameters in this higher order ARX model are
used to construct future predictors which are used to
form a basis for the states. Using the estimated states
the model matrices are computed. In the SSNEW al-
gorithm then both the states and the innovations are
estimated and assumed known.

In the first step of the DSR e algorithm only the
residual of a higher order ARX model is used, i.e., with-
out computing or using the parameters in the higher
order ARX model. This is indeed a major difference
as we will illustrate in Section 8 with numerical exam-
ples, especially when measured on the variance of the
estimation results.

Since the PBSID algorithm is asymptotically equiv-
alent with the SSARX method by Jansson (2003) we
find it useful to compare the DSR e algorithm with
the PBSID opt and SSARX algorithms, only. A Monte
Carlo simulation example is presented in the next sec-
tion.

8. Examples

8.1. SISO one state closed loop system

In Di Ruscio (2009) it was found that the PARSIM-
E method fails to give comparable results as the PEM
and DSR e methods on a SISO system with a white in-
novations process and a white reference signal. In this
example we compare the DSR e method with PEM and
the recently published PBSID opt algorithm, Chiuso
(2007b), as well as the SSNEW method in the original
paper by Ljung and McKelvey (1995). Furthermore
we also investigate the SSARX algorithm by Jansson
(2003) as described in Section 4.2 and the modified
SSARX algorithms, SSARX mod1, SSARX mod2 and
the bootstrap subspace method SSARX mb presented
in Section 5.

Consider the following system with proper order of
appearance

yk = xk + ek, (66)

uk = −Kpyk + rk, (67)

xk+1 = Axk +Buk +Kek, (68)

We consider the following two cases:

Case 1: Same parameters as in Di Ruscio (2009), i.e.,
A = 0.9, B = 0.5, K = 0.6 and an initial value
x1 = 0. ek is white noise with standard deviation
1.0. For the controller we use Kp = 0.6. Instead
of a white noise reference signal we use rk as a

Pseudo Random Binary (PRBS) signal generated
in Matlab as R = 0.1 ∗ idinput(N,′ prbs′, [0, 1/50])
and rk = R(k) ∀ k = 1, . . . , N . The simulation
horizon equals N = 1000.

Case 2: An integrator system with A = 1, B =
0.5 and K = 1. Innovations ek, controller and
reference rk same as in Case 1 above.

The reference signal used in this example is a pseudo
random binary signal with clock period of 50, i.e.,
the signal is approximately constant over intervals of
length 50 samples. The reference experiment is infor-
mative enough.

The system was simulated with discrete time in-
stants 1 ≤ k ≤ N . This was done M = 100 times with
different noise realizations on the innovations ek but
with the same reference signal, rk, i.e. a Monte Carlo
simulation is performed for both the above cases. For
the subspace algorithms DSR e, PBSID opt, SSNEW,
SSARX and SSARX mb methods we used the same
algorithm past horizon parameter, J = 6 but with
varying future horizon in the range 1 ≤ L ≤ 5. The
system identification Toolbox Ident function pem was
used with the calls dat = iddata(Y, U, 1) and m =
pem(dat, n) with system order n = 1.

In order to investigate if the DSR e algorithm is ca-
pable of producing as efficient estimates as the optimal
PEM method we implemented the 2nd deterministic
identification problem in the DSR e algorithm by using
PEM, i.e. using PEM in order to solve the determinis-
tic identification problem with known inputs uJ|1, the

estimated innovations εJ|1 and estimated outputs ydJ|1.
The results of this in comparison with the correspond-
ing results from PEM are illustrated in Fig. 1. The
results are important because it shows that the DSR e
algorithm is capable of producing almost similar results
as PEM, on this example. It is also from this clear that
it is of central importance to implement the 2nd deter-
ministic identification step in the DSR e algorithm as
efficient as possible. This example also tells us that we
have implemented the 1st important step in the DSR e
algorithm in an efficient way, i.e. that the innovations
εJ|1 and the signal part ydJ|1 = DXJ|1 are consistent

and (close to) efficient estimates.
In Figs. 2 and 9 we present the same Monte Carlo

experiment but with the actual DSR e algorithm with
the 2nd deterministic identification problem solved as
a subspace identification problem as presented in Sec-
tion 6.1 in Di Ruscio (2009). The results are promising
and DSR e (for L = 3 in this example) seems to pro-
duce estimates with lower variance than PEM. Notice
however, that using L = 1 the DSR e estimates are
approximately similar to the PEM estimates.

In order to better compare the results we measure
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Figure 1: A, B and K parameter estimates of the
closed loop system in Example 8.1 with pa-
rameters as in Case 1. Past horizon J = 6
for the DSR e method with the determinis-
tic identification 2nd step solved by using the
PEM method.
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Figure 2: A, B and K parameter estimates of the
closed loop system in Example 8.1 with pa-
rameters as in Case 1. Future horizon L = 3
and past horizon J = 6. The DSR e al-
gorithm compared with corresponding PEM
estimates.
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Figure 3: Parameter estimates of the closed loop sys-
tem in Example 8.1 with parameters as in
Case 1. Future horizon L = 3 and past hori-
zon J = 6. The PBSID opt algorithm as in
Chiuso (2007a).
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Figure 4: Parameter estimates of the closed loop sys-
tem in Example 8.1 with parameters as in
Case 1. Future horizon L = 3 and past hori-
zon J = 6. The SSNEW method as in Ljung
and McKelvey (1995).

216



Di Ruscio, “A Bootstrap Subspace Identification Method”

0 20 40 60 80 100
−2

−1

0

1

2
A parameter estimates: SSARX

0 20 40 60 80 100
−2

−1

0

1

2
A parameter estimates: DSR_e

0 20 40 60 80 100
−5

0

5
B parameter estimates: SSARX

0 20 40 60 80 100
−5

0

5
B parameter estimates: DSR_e

0 20 40 60 80 100
−2

−1

0

1

2
K parameter estimates: SSARX

Number of simulations (Monte carlo)
0 20 40 60 80 100

−2

−1

0

1

2
K parameter estimates: DSR_e

Number of simulations (Monte carlo)

Figure 5: Parameter estimates of the closed loop sys-
tem in Example 8.1 with parameters as in
Case 1. Future horizon L = 3 and past hori-
zon J = 6. The SSARX method as in Jans-
son (2003).
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Figure 6: Parameter estimates of the closed loop sys-
tem in Example 8.1 with parameters as in
Case 1. Future horizon L = 3 and past hori-
zon J = 6. The 1st modified SSARX method
as presented in Section 5.1.
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Figure 7: Parameter estimates of the closed loop sys-
tem in Example 8.1 with parameters as in
Case 1. Future horizon L = 3 and past hori-
zon J = 6. The 2nd modified SSARX method
as presented in Section 5.2.
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Figure 8: Parameter estimates of the closed loop sys-
tem in Example 8.1 with parameters as in
Case 1. Future horizon L = 3 and past hori-
zon J = 6. The bootstrap subspace method as
presented in Section 6.
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Figure 9: A and B parameter estimates of the closed
loop system in Example 8.1 with parameters
as in Case 1. Varying future horizon param-
eter, L = 1, 2 and fixed past horizon J = 6
for the DSR e method, Di Ruscio (2009).
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Figure 10: A parameter estimates of the closed loop
system in Example 8.1 with parameters as
in Case 1. Varying future horizon parame-
ter, L = 1, 2, 3 and fixed past horizon J = 6.
Results from PBSID opt, Chiuso (2007b),
and DSR e, Di Ruscio (2009)

0 20 40 60 80 100
0

0.5

1

1.5
A parameter estimates: SSNEW

L=
1

0 20 40 60 80 100
0

0.5

1

1.5
A parameter estimates: DSR_e

L=
1

0 20 40 60 80 100
−1

0

1

2
A parameter estimates: SSNEW

L=
2

0 20 40 60 80 100
−1

0

1

2
A parameter estimates: DSR_e

L=
2

0 20 40 60 80 100
−1

0

1

2
A parameter estimates: SSNEW

Number of simulations (Monte carlo)

L=
3

0 20 40 60 80 100
−1

0

1

2
A parameter estimates: DSR_e

Number of simulations (Monte carlo)

L=
3

Figure 11: A parameter estimates of the closed loop
system in Example 8.1 with parameters as
in Case 1. Varying future horizon parame-
ter, L = 1, 2, 3 and fixed past horizon J = 6.
Results from SSNEW, Ljung and McKelvey
(1995), and DSR e, Di Ruscio (2009).

the size of the covariance matrix of the error between
the estimates and the true parameters, i.e.,

Palg =
N

M − 1

M∑
i=1

(θ̂i − θ0)(θ̂i − θ0)T , (69)

as

Valg = trace(Palg), (70)

where subscript “alg” means the different algorithms,
i.e. PEM, DSR e, PBSID opt, SSNEW SSARX,
SSARX mod and SSARX mod2. For Case 1 the true
parameter vector is θ0 =

[
0.9 0.5 0.6

]T
and the

corresponding estimates θ̂i =
[
Â B̂ K̂

]T
i

for each
estimate i = 1, . . . ,M in the Monte Carlo simulation.
From the simulation results of Case 1 we obtain the
results as in Table 1 and for Case 2 as in Table 2.

As we see the variance is close and approximately
the same for L = 1. However, when the future horizon
increases the variance of the PBSID opt, SSARX and
SSNEW methods seems to diverge and produce bad
estimates. Interestingly, the DSR e method behaves
completely different and produce parameter estimates
with a smaller variance as the future horizon increases.
This is also the case for the bootstrap subspace method
SSARX mb which produces estimates close to the cor-
responding estimates from DSR e, see Tables 1 and 2.

In order to investigate the convergence properties of
the bootstrap method, SSARX mb, we implemented
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Table 1: Results from Monte Carlo simulations, with
parameters as in Case 1. The trace of the co-
variance matrix, Palg, of the error between

estimates and true parameters. A pseudo
random ref. signal, R = 0.1 ∗ idinput
(N,′ prbs′, [0, 1/50]) with N = 1000 and past
horizon J = 6. SISO example with A = 0.9,
B = 0.5, K = 0.6 and Kp = 0.6.

Valg L = 1 L = 2 L = 3 L = 5

VPEM 115.47 115.47 115.47 115.47
VDSR e 99.93 53.31 44.70 44.70
VPBSID opt 99.96 350.79 569.38 1128.8
VSSNEW 95.19 486.69 761.08 1459.1
VSSARX 99.94 2287.4 3189.9 4063.7
VSSARX mod1 99.94 355.14 569.90 1110.9
VSSARX mod2 99.79 115.94 119.12 144.96
VSSARX mb 99.93 107.15 109.04 110.65

Table 2: Results from Monte Carlo simulations, with
parameters as in Case 2. The trace of the co-
variance matrix, Palg, of the error between

estimates and true parameters. A pseudo
random ref. signal, R = 0.1 ∗ idinput
(N,′ prbs′, [0, 1/50]) with N = 1000 and past
horizon J = 6. Integrator example with
A = 1, B = 0.5, K = 1 and Kp = 0.6.

Valg L = 1 L = 2 L = 3 L = 5

VPEM 665.44 665.44 665.44 665.44
VDSR e 564.25 144.67 57.98 26.65
VPBSID opt 564.29 677.17 828.28 1256.8
VSSNEW 553.95 2539.1 3590.0 5596.8
VSSARX 564.28 18921.5 31483.2 53966.3
VSSARX mod1 564.28 677.91 830.97 1291.1
VSSARX mod2 564.04 568.76 572.15 981.58
VSSARX mb 564.04 343.38 216.74 154.09

Table 3: Results from Monte Carlo simulations, with
parameters as in Case 1. The trace of the
covariance matrix, Palg, of the error between

estimates and true parameters. A Gaussian
white noise ref. signal, R = randn(N, 1)),
i.e. with unit variance and N = 1000. Past
horizon J = 6. SISO example with A = 0.9,
B = 0.5, K = 0.6 and Kp = 0.6.

Valg L = 1 L = 2 L = 3 L = 5

VPEM 24.36 24.36 24.36 24.36
VDSR e 5.84 4.13 4.18 5.38
VPBSID opt 4.49 3.87 3.86 3.88
VSSNEW 4.25 5.60 5.82 6.45
VSSARX 4.40 4.64 4.72 4.62
VSSARX mod1 4.40 4.58 4.67 4.54
VSSARX mod2 4.42 4.52 4.69 4.63
VSSARX mb 4.42 5.08 4.77 4.99

Table 4: Parameters as in Case 1. The trace of the co-
variance matrix, Palg, of the error between es-

timates and true parameters. Varying future
horizon, L, vs the number of bootstrap itera-
tions, ib, of the algorithm SSARX mb. Result
from the higher order ARX regression prob-
lem as initial model.

L|ib ib = 1 ib = 2 ib = 3 ib = 4

1 99.79 99.79 99.79 99.79
2 115.94 87.12 87.24 87.23
3 119.12 80.00 79.45 79.59

Table 5: Parameters as in Case 1. The trace of the co-
variance matrix, Palg, of the error between es-

timates and true parameters. Varying future
horizon, L, vs the number of bootstrap itera-
tions, ib, in the SSARX mb algorithm. A zero
initial model, i.e., A0 = 0, B0 = 0, D0 = 0 and
K0 = 0.

L|ib ib = 1 ib = 2 ib = 3 ib = 4

1 99.79 99.79 99.79 99.79
2 115.94 87.43 87.23 87.23
3 119.12 80.89 79.44 79.59

the algorithm with different number of bootstrap it-
erations, and different initial models. See Tables 4
and 5. As we see from this example ib = 2 or ib = 3
bootstrap iterations is enough. And even more impres-
sive, the bootstrap method seems to converge to the
same model, irrespective of initial model. This is good
news for which statistically efficiency possibly may be
proven.

As we see from Figs. 2 to 12 presented in this paper,
the estimates from the DSR e algorithms seem to be
superior compared to the corresponding results from
the other subspace algorithms, SSNEW, SSARX and
PBSID opt.

Also the DSR e algorithm with future horizon pa-
rameter L = 3 seems to produce parameter estimates
with smaller variance compared to the corresponding
estimates from PEM, see Figs. 2 and 9. This may also
be seen from Tables 1 and 2. The reason for this is
not clear, because PEM is capable of producing opti-
mal estimates. However, this may be due to a “trade
off between bias and variance”, but this is not further
discussed. Notice as mentioned that the parameter es-
timates from DSR e are unbiased and approximately
similar to the PEM estimates for L = 1 on this exam-
ple, but the variance seems to be smaller but biased
for increasing future horizon and in particular L = 3.
Noticing that the behavior of the PBSID opt, SSNEW
and SSARX methods seems to diverge for increasing
future horizon.
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This same behavior is observed with the parameters
in Case 2 above. The results are approximately
the same for future horizon L = 1. In Fig. 12 we
illustrate the A parameter estimates from PBSID opt
and DSR e for varying future horizon parameter L.
The performance of the DSR e algorithm seems to be
superior compared to the PBSID opt algorithm.

Finally, we also used a white reference signal in the
Case 1 example and the results are presented in Table
3. In this case all methods produced approximately the
same model but with PBSID opt producing the small-
est criterion Valg. However, the differences between

the methods are minor.
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Figure 12: A parameter estimates of the closed loop
system in Example 8.1 with parameters as
in Case 2. Varying future horizon parame-
ter, L = 2, 3, 4 and fixed past horizon J = 6.

The estimation results from the SSARX mb algo-
rithm in Table 1 converged to the same VSSARX mb
values irrespective of the initial models used, e.g. for a
zero initial model, an initial model from a higher order
ARX strategy or using the results from the SSARX
algorithm as initial values.

8.2. Closed loop MIMO 2× 2 system with
n = 3 states

Consider the MIMO output feedback system

yk = Dxk + wk, (71)

uk = G(rk − yk), (72)

xk+1 = Axk +Buk + vk. (73)

where

A =

 1.5 1 0.1
−0.7 0 0.1

0 0 0.85

 , B =

 0 0
0 1
1 0

 , (74)

D =

[
3 0 −0.6
0 1 1

]
. (75)

The feedback is obtained with

G =

[
0.2 0
0 0.2

]
. (76)

and rk with a binary sequence as a reference for each
of the two outputs in yk, generated by using the
MATLAB IDENT Toolbox function idinput, i.e., R =[
R1 R2

]
with R1 = idinput(N,′ prbs′, [0, 1/50])

and R2 = idinput(N,′ prbs′, [0, 1/75]).
The process noise vk and measurements noise, wk

are white with covariance matrices E(vkv
T
k ) = 0.052I3

and E(wkw
T
k ) = 0.12I2, respectively. For comparison

purpose we present the three eigenvalues of the system,
one real and a complex conjugate pair, i.e.

λ1 = 0.85, (77)

λ2,3 = 0.75± j0.37. (78)

A Monte Carlo simulation with M = 100 different
experiments, 1 ≤ i ≤ M , is performed. The simu-
lation results for the eigenvalue estimates from PEM,
PBSID opt, DSR e and the SSARX mb methods are
illustrated in Fig. 13 for number of samples N = 1000
and in Fig. 14 for N = 10000 samples. For the DSR e
and SSARX mb methods we used the algorithm hori-
zon parameters, J = 6 and L = 2. For the PBSID opt
method we had to chose L = 3 in order to obtain re-
sults, probably du to the definition of the future hori-
zon parameter in this method.

The initial model for the SARX mb method was
taken from a higher order ARX model with past hori-
zon J = 6. For this example the SSARX mb method
converged to a biased model when a zero initial model
was used, which indicates that the initial model for the
SSARX mb method should be reasonable.

For this MIMO system with three states example
we observed sensitivity for the initial model chosen in
the new bootstrap subspace identification algorithm
SSARX mb. Using a zero initial model resulted in
a biased model, however using an initial model from
the higher order ARX strategy resulted in a unbiased
model with approximately the same variance as the
corresponding PEM estimates.

9. Conclusion

We have in this paper shown by numerical Monte Carlo
simulations, based on one example presented, that the
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Figure 13: Eigenvalue estimates from the PEM,
PBSID opt, DSR e and SSARX mb
methods. The correct eigenvalues are
λ1 = 0.85 and a complex conjugate pair,
λ2,3 = 0.75± j0.3708. Complex eigenvalues
are in complex conjugate pairs. Hence, the
negative imaginary part is not presented.
Number of samples, N = 1000.

DSR e algorithm outperforms the SSNEW, SSARX
and PBSID opt methods for closed loop subspace sys-
tem identification, in particular for systems with col-
ored (non-white) reference signals and when the future
horizon is larger than the system order, i.e., L > n, i.e.
on the examples presented in this paper. One other
examples the performance are more similar.

On the SISO one state example presented the vari-
ance is approximately the same when the future hori-
zon, L, is equal to the system order (L = 1). How-
ever, the algorithms behave completely differently for
increasing future horizon. The DSR e algorithm pro-
duced estimation results with smaller variance which
seems to converge, while the corresponding variance
from the SSNEW, SSARX and PBSID opt algorithms
produced estimation results with increasing variance as
the future horizon increases.

The original SSARX algorithm is discussed and a
new modified version is presented. We have presented
a modified implementation of the SSARX algorithm,
Jansson (2003), which produces estimates with vari-
ances which are close to the variance on the correspond-
ing PBSID opt algorithm, Chiuso (2007b), even for a
finite data example and for colored reference signal.

Based on the modified SSARX algorithm we present
a new bootstrap subspace identification algorithm
which is found promising. This bootstrap algorithm
seems to converge after a few iterations and seems

0.6 0.7 0.8 0.9
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Re

Im

PEM: eigenvalue estimates

0.6 0.7 0.8 0.9
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Re

Im

DSR
e
: eigenvalue estimates

0.6 0.7 0.8 0.9
−0.1

0

0.1

0.2

0.3

0.4

0.5

Re

Im

PBSID_opt: eigenvalue estimates

0.6 0.7 0.8 0.9
−0.1

0

0.1

0.2

0.3

0.4

0.5

Re

Im

SSARX_mb: eigenvalue estimates

Figure 14: Eigenvalue estimates from the PEM,
PBSID opt, DSR e and SSARX mb
methods. The correct eigenvalues are
λ1 = 0.85 and a complex conjugate pair,
λ2,3 = 0.75± j0.3708. Complex eigenvalues
are in complex conjugate pairs. Hence, the
negative imaginary part is not presented.
Number of samples, N = 10000.

to produce parameter estimates close to the corre-
sponding estimates from PEM and the DSR e algo-
rithm. Monte Carlo simulation experiments indicate
some asymptotic equivalent properties with the boot-
strap subspace method and the DSR e method. This
work is believed to be important for the search for a
variance efficient subspace identification algorithm.

A. Canonical correlation analysis

In Jansson (2003, 2005) the Canonical Correlation
Analysis (CCA) also known as Canonical Variate Anal-
ysis (CVA) is used in order to obtain the estimate of ÕL
and the states XJ|L. See also Overschee and de Moor
(1996). Consider the LS problem, eq. (22), with pa-
rameter matrix, θ̃, defined in eq. (24), i.e.,

ỸJ|L = θ̃Wp, (79)

where Wp contains the past data Hankel matrices as
defined in eq. (26). The OLS estimate of eq. (79) is

ˆ̃
θ = ỸJ|LWp(WpW

T
p )−1. (80)

Define a matrix, M , which is a weighting of the param-
eter matrix estimate, eq. (80), as follows

M = (ỸJ|LỸ
T
J|L)−

1
2

ˆ̃
θ(WpW

T
p )

1
2

= (ỸJ|LỸ
T
J|L)−

1
2 ỸJ|LW

T
p (WpW

T
p )−

1
2 . (81)
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Perform the SVD of M

M = USV T ≈ U1S1V
T
1 , (82)

where S1 = S(1 : n, 1 : n) contains the n largest sin-
gular values different from “one”, not “zero”, since the
“canonical angles” are considered, and U1 = U(:, 1 : n),
V1(:, 1 : n). Putting eq. (81) equal to the approxima-
tion in eq. (82), i.e.,

M = (ỸJ|LỸ
T
J|L)−

1
2

ˆ̃
θ(WpW

T
p )

1
2 = U1S1V

T
1 , (83)

which gives

ˆ̃
θ = (ỸJ|LỸ

T
J|L)

1
2U1S1V

T
1 (WpW

T
p )−

1
2 . (84)

In Jansson (2003, 2005) an input normal realization is
used and hence,

ˆ̃OL = (ỸJ|LỸ
T
J|L)

1
2U1S1, (85)

X̂J|1 = V T1 (WpW
T
p )−

1
2 . (86)

References

Chiuso, A. On the relation between CCA and pre-
dictor based subspace identification. IEEE Trans-
action on Automatic Control, 2007a. 52(10):1795–
1812. doi:10.1109/TAC.2007.906159.

Chiuso, A. The role of vector autoregressive
modeling in predictor-based subspace identifica-
tion. Automatica, 2007b. 43(6):1034–1048.
doi:10.1016/j.automatica.2006.12.009.

Chiuso, A. and Picci, G. Consistency analy-
sis of some closed-loop subspace identification
methods. Automatica, 2005. 41(3):377–391.
doi:10.1016/j.automatica.2004.10.015.

Di Ruscio, D. Combined Deterministic and Stochas-
tic System Identification and Realization: DSR-a
subspace approach based on observations. Model-
ing, Identification and Control, 1996. 17(3):193–230.
doi:10.4173/mic.1996.3.3.

Di Ruscio, D. On subspace identification of the ex-
tended observability matrix. In 36th Conf. on Deci-
sion and Control. 1997.

Di Ruscio, D. A weighted view of the partial least
squares algorithm. Automatica, 2000. 36(6):831–850.
doi:10.1016/S0005-1098(99)00210-1.

Di Ruscio, D. Subspace System Identification of the
Kalman Filter. Modeling, Identification and Control,
2003. 24(3):125–157. doi:10.4173/mic.2003.3.1.

Di Ruscio, D. Subspace system identification of the
Kalman filter: open and closed loop systems. In
Proc. Intl. Multi-Conf. on Engineering and Techno-
logical Innovation. 2008.

Di Ruscio, D. Closed and Open Loop Subspace Sys-
tem Identification of the Kalman Filter. Model-
ing, Identification and Control, 2009. 30(2):71–86.
doi:10.4173/mic.2009.2.3.

Ho, B. L. and Kalman, R. E. Effective construction of
linear state-variable models from input/output func-
tions. Regelungstechnik, 1966. 14(12):545–592.

Jansson, M. Subspace Identification and ARX Model-
ing. In 13th IFAC Symp. on System Identif. 2003.

Jansson, M. A new subspace identification method for
open and closed loop data. In IFAC World Congress.
2005.

Larimore, W. E. System identification, reduced order
filtering and modeling via canonical variate analysis.
In Proc. Am. Control Conf. pages 445–451, 1983.

Larimore, W. E. Canonical variate analysis in identifi-
cation, filtering and adaptive control. In Proc. 29th
Conf. on Decision and Control. pages 596–604, 1990.

Ljung, L. System Identification: Theory for the User.
Prentice Hall PTR, 1999.

Ljung, L. and McKelvey, T. Subspace identification
from closed loop data. 1995. Technical Report LiTH-
ISY-R-1752, Linköping University, Sweden.

Ljung, L. and McKelvey, T. Subspace identification
from closed loop data. Signal Processing, 1996.
52(12):209–215. doi:10.1016/0165-1684(96)00054-0.

Overschee, P. V. and de Moor, B. Subspace identifica-
tion for linear systems. Kluwer Acad. Publ., 1996.

Qin, S. J. and Ljung, L. Closed-loop subspace iden-
tification with innovation estimation. In Proc. 13th
IFAC SYSID Symposium. pages 887–892, 2003.

Qin, S. J. and Ljung, L. On the role of future horizon
in closed-loop subspace identification. In Proc. 14th
IFAC SYSID Symposium. pages 1080–1084, 2006.

Qin, S. J., Weilu, L., and Ljung, L. A novel sub-
space identification approach with enforced causal
models. Automatica, 2005. 41(12):2043–2053.
doi:10.1016/j.automatica.2005.06.010.

Zeiger, H. and McEwen, A. Approximate linear re-
alizations of given dimensions via Ho’s algorithm.
IEEE Trans. on Automatic Control, 1974. 19(2):153.
doi:10.1109/TAC.1974.1100525.

222

http://dx.doi.org/10.1109/TAC.2007.906159
http://dx.doi.org/10.1016/j.automatica.2006.12.009
http://dx.doi.org/10.1016/j.automatica.2004.10.015
http://dx.doi.org/10.4173/mic.1996.3.3
http://dx.doi.org/10.1016/S0005-1098(99)00210-1
http://dx.doi.org/10.4173/mic.2003.3.1
http://dx.doi.org/10.4173/mic.2009.2.3
http://dx.doi.org/10.1016/0165-1684(96)00054-0
http://dx.doi.org/10.1016/j.automatica.2005.06.010
http://dx.doi.org/10.1109/TAC.1974.1100525
http://creativecommons.org/licenses/by/3.0

	Introduction
	Problem formulation
	Preliminary theory and definitions
	Basic matrix definitions
	Basic matrix equations

	On ARX based subspace identification
	Higher order ARX model with model reduction
	The SSARX method
	Discussion

	Modified SSARX algorithms
	Modified SSARX algorithm
	Modified SSARX algorithm using the innovations
	Discussion

	A novel bootstrap subspace algorithm 
	Additional details

	Outline of some other subspace methods
	The DSR_e method
	The SSNEW method
	The PBSID_opt method
	Discussion

	Examples
	SISO one state closed loop system
	Closed loop MIMO 2 2 system with n=3 states

	Conclusion
	Canonical correlation analysis

