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Abstract

One of the main advantages of the Gantry-Tau machine is a large accessible workspace/footprint ratio
compared to many other parallel machines. The Gantry-Tau improves this ration further by allowing a
change of assembly mode without internal link collisions or collisions between the links and end-effector.
The reconfigurable Gantry-Tau kinematic design obtained by multi-objective optimisation according to
this paper gives the following features: 3-D workspace/footprint ratio is more than 3.19, lowest Cartesian
stiffness in the workspace is 5N/µm and no link collisions detected. The optimisation parameters are
the support frame lengths, the actuator positions and the robot’s arm lengths. The results comparison
between the evolutionary complex search algorithm and gradient-based method used for the Gantry-Tau
design in the past is also presented in this paper. The detailed statics model analysis of the Gantry-Tau
based on a functionally dependency is presented in this paper for the first time. Both the statics model and
complex search algorithm may be applied for other 3-DOF Hexapods without major changes. The existing
lab prototype of the Gantry-Tau was assembled and completed at the University of Agder, Norway.

Keywords: parallel manipulator, statics, design optimisation.

1 Introduction

A generalised parallel kinematic manipulator (PKM)
is a closed-loop kinematic chain mechanism where the
end-effector is linked to the base by several indepen-
dent kinematic chains, (Merlet, 2000). It may consist
of redundant mechanisms with more actuators than the
number of controlled degrees of freedom of the end-
effector. The study of PKMs has been an active re-
search field in robotics and mechanical design for a
long time and different parallel mechanism with speci-
fied number and type of DOF have been proposed. In
the late 1980s a new field of applications and research
was developed by (Clavel, 1988), who put the focus on

lower mobility parallel mechanism. The Delta robot
presented by Clavel was a base for a large range of
machines dedicated to high-speed applications but be-
cause of small workspace in relation to footprint and
limited number of degrees of freedom the robot can
not be used as a general purpose manipulator. Pier-
rot proposed a 6-DOF fully-parallel robot HEXA. The
HEXA robot, (Pierrot et al., 1992) and (Uchiyama
et al., 1990), is an extension of the Delta mechanism
having 6 DOFs but because the workspace/footprint
ratio and tilting angles are small this robot has also a
limited capability compared to serial manipulators.

The Tau family of parallel kinematic manipulators
was invented by ABB Robotics, see (Brog̊ardh, 2000).

doi:10.4173/mic.2009.2.1 c© 2009 Norwegian Society of Automatic Control

http://dx.doi.org/10.4173/mic.2009.2.1


Modeling, Identification and Control

Figure 1: A variant of 3-2-1 link structure mounted on
three quide ways.

The Gantry-Tau PKM makes use of the non-symmetric
Tau structure that is based on clustering the links
mounted on the actuated arms in the configuration 3-2-
1. The different possibilities of Tau structures are pre-
sented in (Brog̊ardh and Gu, 2002). The link structure
3-2-1 is shown in Fig. 1, where the six links support
only axial forces. Tool forces (represented by Fh) in
the figure, generate forces and torques on the manip-
ulated platform (in the figure a shaft), which are fully
supported by axial forces in the six links. The link
structure 3-2-1 gives the best opportunities to adapt
the PKM to the specific application requirements. The
high stiffness is obtained by the redundant replacement
of the linear actuator M1 and position of the link L1;
the distance between links can be increased without
reducing the workspace, it makes a possibility of re-
ducing the link forces, especially with respect to the
vertical forces on the TCP. The intended applications
of the Gantry-Tau are high speed machining operations
requiring a workspace equal to or larger than a typical
serial-type robot’s, but with higher stiffness. However,
the robot can also be designed for very fast material
handling and assembly or for high precision processes
such as laser cutting, water jet cutting and measure-
ment.

1.1 Workspace

In order to calculate the workspace one can employ
discretisation methods, geometrical methods or numer-
ical methods. For the discretisation method a grid of
nodes with positions and orientations is defined. Then
the kinematics is calculated for each node and it is

straightforward to verify whether the kinematics can
be solved and to check if joint limits are reached or
link interference occurs. The discretisation algorithm
is simple to implement but has some serious drawbacks.
It is expensive in computation time and results are lim-
ited to the nodes of the grid. One example of this ap-
proach is (Dashy et al., 2002). The most common nu-
merical methods are based upon the Newton-Raphson
approach (Whitney, 1969) and its variants. Using ge-
ometrical methods the workspace can be calculated as
an intersection of simple geometrical objects, (Merlet,
2000), for example spheres. The geometric approach
to define the Gantry-Tau maximum workspace is pre-
sented in this paper.

1.2 Link Collisions

The distance between two geometric objects (lines, seg-
ments of lines, rays, surfaces etc.) is defined as the min-
imum distance between two points on these objects.
Link collisions occur when the distance between two
points on the links is less than the sum of radii of these
links. The links of the manipulator are assumed to be
cylindrical elements.

The link collisions detection methods were pre-
sented in (Eberly, 2001), (Merlet and Daney, 2006)
and (Teller, 2008), but all use vector cross-products to
define the closest distance between two line segments
in 3D plane and no functional analysis of the distance
function in 2D plane was attempted in either (Eberly,
2001) and (Teller, 2008). The Gantry-Tau link colli-
sions detection presented in (Tyapin, 2009) is based on
the conditional equations (boundaries) search method
and included into the design optimisation scheme pre-
sented in this paper. The functional dependency anal-
ysis is applied to the condition equations.

1.3 Stiffness

The stiffness is the most important performance spec-
ification of parallel kinematic machines. Diment-
berg (Dimentberg, 1965) was among the first to use
screw theory to define the stiffness matrix of spring
systems in unloaded equilibrium. A stiffness matrix
relates external forces and torques to the linear and an-
gular displacements of the joints in the Cartesian space.
Since then, the Cartesian stiffness was studied and
there are a lot of calculation methods and algorithms
available such as Finite Element Analysis (Pashkevich
et al., 2005), virtual joint method (Majou et al., 2004).
The stiffness maps of the workspace through Jacobian
Matrix was established in (Gosselin, 1999), (Bi et al.,
2007). The stiffness in X-, Y - and Z-directions were
computed in (El-Khasawneh and Ferreira, 1999), where
the minimum and maximum stiffness and directions in

40



Tyapin and Hovland, “Design Optimisation of the 3-DOF Gantry-Tau PKM”

a given configuration were found through the eigenvec-
tors analysis. An approach to get the stiffness model of
a tripod-based PKM was presented in (Huang and Mei,
2001), where the machine structure is decomposed into
two substructures: machine frame and parallel mecha-
nism.

Two other interesting works considered in our study
are (Li et al., 2002) and (Li and Kao, 2004). The au-
thors proposed the conservative congruence transfor-
mation (CCT), which represents the stiffness control
between the linear Cartesian space at the end-effector
and joint space of a robotic manipulator. In addi-
tion, the CCT for the stiffness mapping between the
cylindrical space and joint space was presented in (Li
et al., 2002) and Jacobian matrix was used to define
the Cartesian stiffness. In (Li and Kao, 2004) CCT
was used to define a kinematic solution for redundant
manipulators. Note that in (Li and Kao, 2004) a new
stiffness matrix Kg is defined, which represents the
changes in geometry through the differential Jacobian
matrix, and externally applied forces. In Section 4 of
this paper, the Kg matrix is not taken into account,
since the joint stiffness Kθ dominates for small external
forces.

The closest methods to this paper are presented
in (Pashkevich et al., 2007), (Company et al., 2005)
and (Liu et al., 2007). The analytical stiffness mod-
elling is presented in (Company et al., 2005), where the
method is based on classical mechanical tools and equa-
tions. The application of this method to lower mobility
parallel mechanisms is more difficult than the one for
Hexapods. For the method in (Company et al., 2005)
forces and torques are applied on the endpoint. An-
other method is presented in (Pashkevich et al., 2007),
where the Jacobian matrices and numerical calcula-
tions were used to define the stiffness. In addition, the
design optimisation is presented in (Pashkevich et al.,
2007). The stiffness functional dependency analysis is
not presented in (Pashkevich et al., 2007), (Company
et al., 2005) and (Liu et al., 2007). The randomised op-
timal design of PKMs based on control random search
technique is presented in Lou et al. (2008), where the
effective regular workspace is introduced. The main
drawback of the method in Lou et al. (2008) is the use
of stiffness as the dexterity constraint but not the ob-
jective and one objective function based on workspace
is used in Lou et al. (2008). The drawback of the op-
timisation algorithm is a lack of ability to reach the
global optimum if the user is not experienced in the
design optimisation and can not setup a range of the
parameter’s limits. However, the method is good for
the Delta-type PKMs.

Three different approaches to define the Cartesian
stiffness of the triangular version of the Gantry-Tau

were used before in (Brog̊ardh et al., 2005), (Williams
et al., 2006) and (Hovland et al., 2007). The first
method was based on the forward kinematics. The
forward kinematics was required to be calculated in
numerical form, but numerical solutions are computa-
tionally expensive. The second method was to use the
Jacobian matrix derived from the inverse kinematics
and matrix inversion. The second method is less com-
putational expensive than the first. The third method
was to use the static matrix and avoid matrix inver-
sions to calculate the Cartesian stiffness in (Hovland
et al., 2007). The method presented in this paper is
based on the geometric algebra and functional depen-
dency analysis to calculate the static matrix and is an
extension of the work in (Hovland et al., 2007). The
main benefit of the static analysis presented in this pa-
per is the savings in computational effort. The stiffness
analysis is developed for the Gantry-Tau but may be
used for the other Hexapods with minor changes.

1.4 Multi-Objective Optimisation

The design optimisation may have many objectives
which cannot be found numerically and it is a rea-
son why most proposed optimal design procedures are
focused on the optimisation of the main characteris-
tic of the manipulator, for example, workspace, con-
ditioning and stiffness indices, vibration analysis and
manipulability criteria. In Stamper et al. (1997) it is
stated that a parallel manipulator with maximum pos-
sible workspace may have undesirable characteristics
such as low stiffness or resonance frequencies, which
means that a multi-objective optimisation is needed.
The multi-objective design optimisation problem is ex-
pressed as follows.

min [ f1(p) , ..., fk(p), fk+1(p) ]

subject to

gi(p) ≤ 0 (1 ≤ i ≤ r)
hj(p) = 0 (1 ≤ j ≤ s)
pLn ≤ pn ≤ pUn (1 ≤ n ≤ m) (1)

where k is the number of objective functions fk(p), p is
a vector of m optimisation parameters, gi(p) and hj(p)
are each of the r inequality and s equality problem con-
straints, pL and pU are lower and upper limits of the
optimisation parameters. The constraints are consid-
ered as a new objective constraints handling function
fk+1(p). Different constraint handling techniques are
presented in Coello (2002).

The most common approach for the constrains han-
dling is the use of penalty functions. When using a
penalty function, the constraint evaluation is used to
penalise an infeasible solution and feasible solutions
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are favored by the selection process. However, penalty
functions have several drawbacks, for example, they
require a careful tuning of the penalty factors that ac-
curately estimates the level of penalisation.

The complex search method was used for the me-
chanical design optimisation in Hansen et al. (2004)
and Hansen and Andersen (2001). In Hansen and An-
dersen (2001) a mechanical design optimisation of a
hydraulically actuated manipulator is presented. The
main objective is minimising the energy consumption
with side constraints on stability, response time and
load dependency. The initial population has 30 de-
signs and optimum design is found in 250 iterations.
In Hansen et al. (2004) a multi-objective design opti-
misation of a servo-robot for a pallets handling is pre-
sented. The objectives are the cost and speed. The
accuracy of the tool point, an expected life of the plan-
etary gears and the welded structure, vibrations and
thermal conditions of the servo motors are the main
side constraints. Discrete design variables originally
handled by a mapping technique. The optimum design
was found in 50 iterations with an initial population of
10.

In multi-objective optimisation, objectives are not
comparable with respect to their magnitude and value
and may conflict, where some objectives can not be in-
creased without a decreasing of others. The result of a
multi-objective optimisation is a set of trade-off solu-
tions which are considered to be suitable for all objec-
tives. In this paper the use of the evolutionary complex
search algorithm for the PKM’s multi-objective design
optimisation is presented. The optimisation scheme
includes the kinematic, elastostatic properties of the
machine and constraint handling based on the penali-
sation function.

In Section 2 the kinematic description of the 3-
DOF Gantry-Tau parallel kinematic machine is pre-
sented. In Section 3 the workspace and unreachable
areas caused by the collisions between the manipulated
platform and support frame are presented. In Section 4
a geometric description of the Cartesian stiffness is pre-
sented. The parabolic functional dependency method
to calculate the Cartesian stiffness in the Y -direction
is presented in Section 4.1. The method to define the
Cartesian stiffness in the Z-direction is presented in
Section 4.2. In Section 4.3 the method for the stiff-
ness in the X-direction is presented. In Section 5 the
3-DOF Gantry-Tau optimisation problem description
and complex search algorithm are presented. In Sec-
tions 7 and 6 the results, conclusions and the future
research directions are presented.

2 Kinematic Description of the
3-DOF Gantry-Tau Parallel
Kinematic Manipulator

The triangular-link version of the Gantry-Tau kine-
matic model is illustrated in Figs. 2, 5 and 8. The 3-
DOF Gantry-Tau can be manually reconfigured while
avoiding singularities. As for the basic Gantry-Tau
structure, each of the 3 parallel arms (lengths L1, L2

and L3) is controlled by a linear actuator with actua-
tion variables q1, q2 and q3. The actuators in Fig. 2 are
aligned in the direction of the global X-coordinate.

Figure 2: Triangular-link variant of the Gantry-Tau
shown in the left-handed configuration for all
link clusters.

Figure 3: The manipulated platform of the Gantry-Tau
robot.

Figs. 3 and 4 show the manipulated platform. The
points A, B, C, D, E and F are the link connection
points. The arm with one single link connects the actu-
ator q1 with platform point F . The arm with two links
connects actuator q2 with the platform points A and
B. The arm with three links connects actuator q3 with
the platform points C, D and E. The triangular pair
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is connected to points D and E. Fig. 7 shows a projec-
tion of the link system in Fig. 2 into the XZ-plane and
Fig. 6 a projection into the Y Z-plane. Fig. 3 shows

Figure 4: Kinematic platform parameters.

Figure 5: The 3-DOF reconfigurable Gantry-Tau robot.

the fixed kinematic parameters of the moving platform,
which are not included in the design optimisation. Lp
is the platform length, Rp is the platform radius, Ltool
is the tool length, Lpin is the length from the platform
circle of radius Rp to the connection point for the uni-
versal joints and Lb is the length from the connection
point to the centre of the joint. According to Fig. 4,
the single link with length L1 is connected to the pin
F via a universal joint pin. The TCP of the robot is
located at the tip of the milling tool. Each link has
a passive 2D universal joint connected to the actuator
and passive 3D joint connected to the platform.

Fig. 5 shows the PKM structure in both the left-
and right-handed assembly modes. The Tau structure
is characterised by a clustering of the links in groups
of 1, 2 and 3, respectively, with fixed link lengths L1,
L2 and L3. Three linear actuators are used at the base
to move the three arms independently in the global X-
direction. The actuator track locations are fixed in the
Y - and Z-directions and the locations are denoted T1y,
T1z, T2y, T2z, T3y and T3z, respectively (see Figs. 2, 5
and 6). The dimensioning of the PKM’s support frame
is given by variables Q1, Q2, Q3 and Q4 as illustrated
in Fig. 5, where Q1 is the depth and Q2 is the height,

Q3 is the Z-coordinate of the actuator T1 and Q4 is
the Y -coordinate of the actuator T2.

Figure 6: Kinematic parameters in YZ-plane.

Figure 7: Kinematic parameters in XZ-plane.

The normalised vectors pointed from the actuator
positions to the points A,B,C,D,E, F on the platform
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Figure 8: A prototype of the Gantry-Tau with a
triangular-mounted link pair built at the Uni-
versity of Agder.

Figure 9: Definitions of the variables at the actuator
side for the single link.

are given below.

A = [Ax Ay Az]
T B = [Bx By Bz]

T

C = [Cx Cy Cz]
T D = [Dx Dy Dz]

T

E = [Ex Ey Ez]
T F = [Fx Fy Fz]

T

A = [(axC + azS + dX1) (ay + dY1) (azC − axS + dZ1)]
T

B = [(bxC + bzS + dX2) (by + dY2) (bzC − bxS + dZ2)]
T

C = [(cxC + czS + dX3) (cy + dY3) (czC − cxS + dZ3)]
T

D = [(dxC + dzS + dX4) (dy + dY4) (dzC − dxS + dZ4)]
T

E = [(exC + ezS + dX5) (ey + dY5) (ezC − exS + dZ5)]
T

F = [(fxC + fzS + dX6) (fy + dY6) (fzC − fxS + dZ6)]
T

(2)

where C = cosα, S = sinα, α is the platform ori-
entation angle and shown in Fig. 7, dXi = X − Tix,
dYi = Y − Tiy, dZi = Z − Tiz, where Tix, Tiy, Tiz are
the coordinates of actuator i for the given TCP posi-

Figure 10: Definitions of the variables at the actuator
side for the double link.

Figure 11: Definitions of the variables at the actuator
side for the triple link.

tions X, Y, Z. [axayaz], [bxbybz], [cxcycz], [dxdydz],
[exeyez], [fxfyfz] are the coordinates of the points
A,B,C,D,E, F in the TCP coordinate frame.

The cosα and sinα equations are given below:

cosα =
T3z − Z√

L2
3m − (Y +My − T3y)2 +

√
M2
x +M2

z

(3)

sinα =
√

1− cos2 α (4)

L3m is the middle length of the triangular-mounted
arm 3. M

′

x,M
′

y,M
′

z are coordinates of a vector from a

midpoint M
′

between the triangular link coordinates
C and E on the platform to the actuator position
(T3xT3yT3z).

M
′

x = Cx +
Ex − Cx

2
M
′

y = Ey M
′

z = Cz +
Ez − Cz

2

In Figs. 9 - 11 the variables used to define the arm
mounting on the carts are shown. The drawing to the
left shows the linear actuator variable q1 and the two
passive joint coordinates q1f and q2f for arm 1. In the
middle of the figure, the linear actuator variable q2 is
defined together with the passive joint coordinates q1a,
q1b, q2a and q2b for the parallelogram of arm 2. Because
of the parallelogram, the passive angles are related as
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follows: q1a = q1b and q2a = q2b. The drawing to the
right shows for arm 3 the linear actuator variable q3,
the triangular mounted links and the link in parallel
with the plane formed by the triangular links. Because
of the construction of this arm, the passive joint angles
are related (for a nominal model) as follows: q1c =
q1d = q1e and q2c = q2d = q2e. The subscripts a to f
refer to the platform connection points A to F , which
are defined in Fig. 4.

A prototype of the 3-DOF Gantry-Tau with a
triangular-mounted link pair built at the University of
Agder, Norway is shown in Fig. 8. The kinematic pa-
rameters of the prototype are given below.

Ltool = 0.001 m Lpin = 0.028 m Lb = 0.03 m

Rp = 0.088 m Lp = 0.250 m Yoffs = 0.125 m

L1 = 1 m L2 = 1 m L3 = 1 m Q3 = 0.42 m

Zoffs = 0 Q1 = 0.5m Q2 = 1m Q4 = 0

T1y = −Q1 T1z = Q1 T2y = 0

T2z = Q2 T3y = 0 T3z = 0

T ′1y = T2y + Yoffs T ′1z = T2z − Zoffs

T ′3y = T3y + Yoffs T ′3z = T3z + Zoffs

T ′5y = T3y T ′5z = T3z + Zoffs

T ′2y = T2y − Yoffs T ′2z = T2z − Zoffs

T ′4y = T3y − Yoffs T ′4z = T3z + Zoffs

T ′6y = T1y + Zoffs T ′6z = T1z − Yoffs (5)

where Yoffs and Zoffs are distances from the base
plate to the universal joint in Y - and Z-axis, Tiy Tiz
are arm actuator positions and T ′iy T

′
iz are link actua-

tor positions. X-coordinates of the actuator positions
q1, q2, q3 are defined from general inverse kinematics.

3 Workspace Evaluation.

A fully geometric approach to define the maximum
workspace of the Gantry-Tau is based on approach pre-
sented in Merlet (2000). Fig. 12 shows three circles,
one for each arm. The centers of the circles 1, 2 and 3
are located at the points ((T1y + Lp + Ltool) (T1z +
Rp + Lpin + Lb

2 )), ((T2y + Yoff + Ltool) (T2z)) and
((T3y + Yoff + Ltool) (T3z)) respectively. The radii of
the circles equal to the arm lengths and distance from
the connection point on the platform to the TCP in
the XZ-plane. The TCP can only reach points inside
of all circles. Fig. 12 also contains three solid lines in
the YZ-plane. The TCP is not allowed to move out-
side of these lines because they indicate the positions
of the support framework.

The valid TCP positions are illustrated in a grey
colour in Fig. 12. This area (Atotal) can be calculated
as a sum of subareas according to:

Atotal = A1 +A2 +A3 +A4 (6)

Figure 12: The cross-sectional workspace area of the
Gantry-Tau in the YZ-plane.

The subareas are in turn calculated by smaller areas as
exemplified for the area A3 in Fig. 13. The subarea A3

consists of two segments of a circle for small values of
Q2 because the upper limit of the maximum workspace
is partly circular and partly straight line. The first seg-
ment of a circle is a segment between points (Q1; z3Q1

),
(y13; z13). The point (y13; z13) is a cross-point between
circles 1 and 3. The point (Q1; z3Q1

) is a cross-point
between the support frame limit Q1 and the third arm
circle. The second segment of a circle has two lim-
its (−y3Q2

;Q2), (y3Q2
;Q2) and a centre in the point

((T3y+Yoff +Ltool) (T3z)). The limits are cross-points
between the support frame limit Q2 and the third arm
circle. At the bigger values of Q2 the upper limit is the

Figure 13: Illustration of workspace Area 3.
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Figure 14: The workspace area of Gantry-Tau machine
in the XZ-plane when it is reconfigured to
work in both right- and left-handed assembly
modes.

Figure 15: Illustration of the areas where the collisions
between the platform and support frame are
detected (grey areas). Square in the middle
is the user’s specified workspace.

circle arc between the points (Q1; z3Q1) and (y13; z13).
Fig. 14 shows the workspace in the XZ-plane, which
can be divided into three sections, sections 1 and 3 are
outside of the guide ways and section 2 is between the
guide ways.

The collisions between the support frame and ma-
nipulated platform reduce the maximum workspace. In
Fig. 15 the square in the middle defines the user’s spec-
ified workspace, where all user’s requirements are met.
The areas where the collisions occur are shown in a
grey colour. The lengths of these areas ha1, ha2, ha3

and total area AU are expressed as follows.

AU = AU1(ha1) +AU2(ha2) +AU3(ha3) (7)

ha1 = Lp + Ltool (8)

ha2 = R∗p cos(αmin) (9)

ha3 = (

√
L2

3 −R∗2p sin2(
2π

3
) +R∗p cos(

2π

3
))
R∗p sin(

2π
3
)

L3

(10)

αmin =
π

2
− arcsin(

Q2

den
) if (Q2 < den) (11)

αmin = 0 if Q2 ≥ den (12)

den =

√
L2

3 −R∗2p sin2(
2π

3
) +R∗p sin(

2π

3
) +R∗p (13)

R∗p = Lpin +Rp +
Lb
2

(14)

where αmin is a minimum possible platform orienta-
tion angle for the current design. The first area AU1

is located near the actuator T1 and found as a sum-
mary of three geometric objects. The first object is
a segment of a circle between points (Q1; z3Q1) and
(y1p; z1p). The point (y1p; z1p) is a cross-point be-
tween the line y = Q1 − ha1 and circle 3 of the max-
imum workspace. The second segment is found be-
tween points (Q1; z2Q1) and (y1p;−z1p), where the sec-
ond point is a cross-point between circle 2 and line
y = Q1 − ha1. The third object (rectangle) is found
between points (Q1; z3Q1

), (y1p; z1p), (y1p;−z1p) and
(Q1; z2Q1

). Areas AU2 and AU3 are found in a similar
way. For more details about the workspace evaluation,
link collisions and collisions between the platform and
support frame refer to Tyapin (2009).

4 Static Analysis.

Figure 16: The Cartesian stiffness in the X-direction
as function of the Y- and Z-coordinates.

Let α, β, γ be the TCP orientation angles, li and
Fi (i = 1, ..., 6) the six PKM link lengths and link
forces. Fx, Fy and Fz are the external Cartesian forces
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Figure 17: The Cartesian stiffness in the Y-direction
as function of the Y- and Z-coordinates.

Figure 18: The Cartesian stiffness in the Z-direction as
function of the Y- and Z-coordinates.

acting on the TCP. Mx, My and Mz are the external
Cartesian torques acting on the TCP. The following
vectors can then be introduced:

X = [X Y Z]T θ = [α β γ]T

F = [Fx Fy Fz]
T M = [Mx My Mz]

T

L = [l1 l2 l3 l4 l5 l6]T Fa = [F1 F2 F3 F4 F5 F6]T

The relationship between the TCP forces and the link
forces are.

F =

6∑
i=1

Fiui M =

6∑
i=1

FiAi × ui (15)

where ui is a unit vector in the direction of link i and
Ai is a vector pointing from the TCP to the end-point
of link i on the platform. The two equations above can
be rewritten using the 6× 6 statics matrix H.[

F
M

]
= HFa

[
∆X
∆θ

]
= J∆L (16)

The Jacobian matrix of the PKM relates changes
in Cartesian position ∆X and orientation ∆θ with
changes in the link lengths ∆L as shown in Eq. (16)

Figure 19: The Cartesian torsional stiffness in the X-
direction as function of the Y- and Z-
coordinates.

Figure 20: The Cartesian torsional stiffness in the Y-
direction as function of the Y- and Z-
coordinates.

(right). In (Gosselin, 1990) the duality between the
statics and the link Jacobian for PKMs is presented,
ie.

H−1 = JT

Based on the duality result, the Cartesian stiffness ma-
trix K can be derived as a function of the statics matrix
as follows.[

F
M

]
= K

[
∆X
∆θ

]
= HFa = HKL∆L

= HKLJ−1
[

∆X
∆θ

]
= HKLHT

[
∆X
∆θ

]
⇒ K = HKLHT (17)

where KL is a 6×6 diagonal matrix with the individual
link stiffnesses along the diagonal. The matrix KL

is presented in (Hovland et al., 2008). The result in
Eq. (17) has the benefit that no matrix inversions are
required to calculate the Cartesian stiffness at X-, Y -
and Z-coordinates, including coordinates where H is
singular.
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Figure 21: The Cartesian torsional stiffness in the Z-
direction as function of the Y- and Z-
coordinates.

Figure 22: Cartesian stiffness in the Y-direction as
function of the Y-coordinate at fixed X=1.0
and Z=0.4.

The elements of the matrix H are the X-, Y - and Z-
components of the vectors pointing from the actuator
positions to the points A,B,C,D,E, F on the platform
and X-, Y - and Z- components of the cross-products
of these vectors and vectors pointed from the TCP to
the points A,B,C,D,E, F on the platform, see Fig. 4.
The 6× 6 static matrix H is given below.

H =


Ax ... Fx
Ay ... Fy
Az ... Fz

(A× a)x ... (F× f)x
(A× a)y ... (F× f)y
(A× a)z ... (F× f)z

 (18)

The Y Z functional dependency is applied to find the
elements of the static matrix H. Note, that the squares
of the elements are required for the Cartesian stiffness.

Stage 1. In this stage all constants are found. The
constants are coordinates of the points A...F on the
platform in the TCP coordinate frame, Y - and Z-
coordinates of the actuators and link lengths. All these

Figure 23: Cartesian stiffness in the Y-direction as
function of the Z-coordinate at fixed Y=0.0
and X=1.0.

Figure 24: Cartesian stiffness in the Z-direction as
function of the Y-coordinate at fixed X=1.0
and Z=0.3, 0.5, 0.7.

constants are the same for the different Y Z-coordinates
of the TCP.

Stage 2. In this stage Y -coordinate is fixed and Z-
coordinate is variable. The upper limit of Z-coordinate
depends on the support frame parameter Q1 and the
lower limit is 0. In this paper a calculation algorithm
for the first column of the static matrix is presented.
The other 5 columns are found in the same way. Ac-
cording to Eqs. (2) and (18),

H11 =
ax cosα+ az sinα+X − T ′1x

L2
(19)

H21 = ay + Y − T ′1y =
C∗∗1a + Y

L2
(20)

H31 =
az cosα− ax sinα+ Z − T ′1z

L2
(21)

where ay, T ′1y, az, ax, T ′1z are constants, C∗∗1a = ay−T ′1y
is constant. Index a shows the constants related to the
point A on the platform. The angle α is expressed as
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Figure 25: Cartesian stiffness in the Z-direction as
function of the Z-coordinate at fixed X=1.0
and Y=-0.3, 0, 0.3, 0.6.

Figure 26: Cartesian stiffness in the X-direction as
function of the Y-coordinate at fixed X=1.0
and Z=0.3, 0.5, 0.7.

follows.

cosα =
T3z − Z√

C
′
1Y

2 + C
′
2Y + C

′
3

(22)

where C
′

1, C
′

2, C
′

3 are help constants found from Eq. (3).
For the fixed Y Eq. (22) is rewritten as follows.

cosα =
T3z − Z√

C
′′
1

sinα =

√
1− (T3z − Z)2

C
′′
1

(23)

According to Eqs. (21) and (23), the element H31 is
expressed as follows.

H31 =
az

T3z−Z√
C
′′
1

− ax
√

1− (T3z−Z)2

C
′′
1

+ Z − T ′1z
L2

⇒

H31 = C∗∗2a + C∗∗3aZ + C∗∗4a

√
C
′′
2 Z

2 + C
′′
3 Z + C

′′
4

(24)

Figure 27: Cartesian stiffness in the X-direction as
function of the Z-coordinate at fixed X=1.0
and Y=-0.3, 0, 0.3, 0.6.

where

C∗∗2a =
T3zaz√
C
′′
1 L2

− T ′1z
L2

C∗∗3a = − az√
C
′′
1 L2

+
1

L2

C∗∗4a = − ax
L2

C
′′

2 , C
′′

3 , C
′′

4 are help variables found from Eq. (23).

X − T ′1x =
√
L2
2 − (Y − T ′1y)2 − (Z − T ′1z)2 (25)

X − T ′1x =
√
C
′′
4aZ

2 + C
′′
5aZ + C

′′
6a (26)

According to Eqs. (23) and (19) the element H11 of
the static matrix H is given below.

H11 = C∗∗5a + C∗∗6aZ + C∗∗7a

√
C
′′
2 Z

2 + C
′′
3 Z + C

′′
4 +

+
√
C
′′
4aZ

2 + C
′′
5aZ + C

′′
6a (27)

C
′′

6a =
L2
2 − (Y − T ′1y)2 − T ′21z

L2
C
′′

5a =
2T ′1z
L2

C
′′

4a =
1

L2
C∗∗5a =

T3zax√
C
′′
1 L2

C∗∗6a =
ax√
C
′′
1 L2

C∗∗7a =
az
L2

where a simplification for X − T ′1x is given below.

X − T ′1x =
√
L2
2 − (Y − T ′1y)2 − (Z − T ′1z)2 (28)

X − T ′1x =
√
C
′′
4aZ

2 + C
′′
5aZ + C

′′
6a (29)

Stage 3. In this stage Z-coordinate is fixed and Y -
coordinate is variable. The equations for the cosα is
expressed as follows.

cosα =
C
′′′

1√
C
′
1Y

2 + C
′
2Y + C

′
3

(30)
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According to Eqs. (21) and (30) an equation for the
element H31 is expresses as follows.

H31 = az
C
′′′

1

L2

√
C
′
1Y

2 + C
′
2Y + C

′
3

+
Z − T ′1z
L2

−

− ax
L2

√
1− C

′′′2
1

C
′
1Y

2 + C
′
2Y + C

′
3

(31)

H31 =
C∗∗∗2a√

C
′
1Y

2 + C
′
2Y + C

′
3

+ C∗∗∗6a −

−

√
C∗∗∗3a Y 2 + C∗∗∗4a Y + C∗∗∗5a

C
′
1Y

2 + C
′
2Y + C

′
3

(32)

where

C∗∗∗2a =
C
′′′

1 az
L2

C∗∗∗3a =
a2xC

′

1

L2
2

C∗∗∗4a =
a2xC

′

2

L2
2

C∗∗∗5a =
a2x(C

′

3 − C
′′′2

1 )

L2
2

C∗∗∗6a =
Z − T ′1z
L2
2

According to Eqs. (18) and (2)

H11 =
ax cosα+ az sinα+X − T ′1x

L2
(33)

X − T ′1x =
√
L2
2 − (Y − T ′1y)2 − (Z − T ′1z)2 (34)

X − T ′1x =
√
C
′′′
2aY

2 + C
′′′
3aY + C

′′′
4a (35)

The element H11 of the static matrix H is given below.

H11 =
C∗∗∗7a√

C
′
1Y

2 + C
′
2Y + C

′
3

−

−

√
C∗∗∗8a Y 2 + C∗∗∗9a Y + C∗∗∗10a

C
′
1Y

2 + C
′
2Y + C

′
3

+

+
√
C
′′′
2aY

2 + C
′′′
3aY + C

′′′
4a (36)

C
′′′

4a =
L2
2 − (Z − T ′1z)2 − T

′2
1y

L2
2

C
′′′

3a =
2T ′1y
L2
2

C
′′′

2a =
1

L2
2

C∗∗∗7a =
C
′′′

1 ax
L2

C∗∗∗8a =
a2zC

′

1

L2
2

C∗∗∗9a =
a2zC

′

2

L2
2

C∗∗∗10a =
a2zC

′

3

L2
2

Stages 4. In this stages the elements H41, H51, H61 of
the static matrix H are found from the previous stages
as a multiplication of two functional dependencies and
not presented in this paper because of a limited space
and long equations.

The Cartesian stiffness matrix K is a 6x6 matrix,
where the elements k1,1,k2,2 and k3,3 are the stiffness
in the CartesianX-, Y - and Z-directions as functions of

the Y - and Z-coordinates at fixed X-coordinate. The
diagonal elements of the matrix K are given below.

k1,1 = k1H
2
11 + k2H

2
12 + k3H

2
13 + k4H

2
14 + k5H

2
15 + k6H

2
16

(37)

k2,2 = k1H
2
21 + k2H

2
22 + k3H

2
23 + k4H

2
24 + k5H

2
25 + k6H

2
26

(38)

k3,3 = k1H
2
31 + k2H

2
32 + k3H

2
33 + k4H

2
34 + k5H

2
35 + k6H

2
36

(39)

k4,4 = k1H
2
41 + k2H

2
42 + k3H

2
43 + k4H

2
44 + k5H

2
45 + k6H

2
46

(40)

k5,5 = k1H
2
51 + k2H

2
52 + k3H

2
53 + k4H

2
54 + k5H

2
55 + k6H

2
56

(41)

k6,6 = k1H
2
61 + k2H

2
62 + k3H

2
63 + k4H

2
64 + k5H

2
65 + k6H

2
66

(42)

where ki are elements of the matrix KL. The Carte-
sian stiffness in the X-, Y -, Z-directions are shown in
Figs. 16, 17 and 18. The Cartesian torsional stiffness
are shown in Figs. 19, 20 and 21.

4.1 The Cartesian Stiffness in the
Y-Direction.

The weakest stiffness for the Gantry-Tau is the stiffness
in the Y -direction when the single link is mounted as
in Fig. 8. Increasing the stiffness in the Y -direction is
one of the priorities of the stiffness optimisation for the
Gantry-Tau. The Cartesian stiffness in the Y -direction
as a function of the Y -coordinate at fixed X = 1.0 and
Z = 0.4 is shown in Fig. 22. The stiffness in the Y -
direction are given in Eq. (38). According to Eq. (20),
the general equation for the function k2,2 is given be-
low.

k2,2 = C∗∗1 Y 2 + C∗∗2 Y + C∗∗3 (43)

C∗∗1 = k1 + k2 + k3 + k4 + k5 + k6

C∗∗2 = k12C∗∗1a + k22C∗∗1b + k32C∗∗1c + k42C∗∗1d +

+k52C∗∗1e + k62C∗∗1f

C∗∗3 = k1C
∗∗2
1a + k2C

∗∗2
1b + k3C

∗∗2
1c + k4C

∗∗2
1d +

+k5C
∗∗2
1e + k6C

∗∗2
1f

where C∗∗1 , C∗∗2 , C∗∗3 are constants. Eq. (43) is a gen-
eral parabolic equation.

The approach presented in this Section reduces a
computation time effort because the stiffness in the Y -
direction is found as a parabolic function, where the
constants are calculated before the optimisation starts.
The Cartesian stiffness in the Y -direction as a func-
tion of the Z-coordinate at fixed Y = 0.0 and X = 1.0
is shown in Fig. 23. The stiffness function k2,2(Z) is
constant. The stiffness optimisation process requires a
maximisation of the minimum stiffness in a given di-
rection. The minimum of the stiffness k2,2(Y ) is found
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from Eq. (43) and expressed as follows.

k2,2min
=

4C∗∗1 C∗∗3 − C∗∗22

4C∗∗1
(44)

4.2 The Cartesian Stiffness in the
Z-Direction.

The Cartesian stiffness in the Z-direction as a func-
tion of the Y -coordinate at fixed X = 1.0 and Z =
0.3, 0.5, 0.7 is shown in Fig. 24. The Cartesian stiffness
in the Z-direction as a function of the Z-coordinate at
fixed X = 1.0 and Y = −0.3, 0, 0.3, 0.6 is shown in
Fig. 25.

According to Eqs. (24) and (39), the general equa-
tion for the function k3,3 is given below.

k3,3 = C∗∗22 + C∗∗23 Z2 + 2C∗∗2 C∗∗3 Z +

+C∗∗24 (C
′′

2 Z
2 + C

′′

3 Z + C
′′

4 ) +

+2C∗∗2 C∗∗4

√
C
′′
2 Z

2 + C
′′
3 Z + C

′′
4 +

+2C∗∗3 Z
√
C
′′
2 Z

2 + C
′′
3 Z + C

′′
4 (45)

where C∗∗2 − C∗∗4 are constants for the given TCP
Y -coordinate. Due to the additional functions the
parabolic functional analysis is not applicable and the
Cartesian stiffness function is found as a summation
of three functions as shown in Eq. (45). The method
presented in Eq. (45) is suitable for the full range of
the platform design.

The first derivative of the Eq. (45) is given below.

dk3,3(Z)

dZ
= 2C∗∗23 Z + 2C∗∗2 C∗∗3 + C∗∗24 (2C

′′
2 Z + C

′′
3 ) +

+
C∗∗2 C∗∗4 (2C

′′
2 Z + C

′′
3 ) + 2C∗∗3 (C

′′
2 Z

2 + C
′′
3 Z + C

′′
4 )√

C
′′
2 Z

2 + C
′′
3 Z + C

′′
4

+
C∗∗3 Z(2C

′′
2 Z + C

′′
3 )√

C
′′
2 Z

2 + C
′′
3 Z + C

′′
4

(46)

The minimum of the Cartesian stiffness in the Z-
direction is found from Eq. (46) where the first deriva-
tive equals zero or at the boundary of the region. Anal-
ysis of these equations shows that the minimum of the
stiffness k3,3 is found at fixed X and at the limits of
the workspace (user’s specified area) on the Y -axis. Z-

coordinate is found by solving
dk3,3(Z)
dZ = 0 and both

Z- and Y -coordinates of the minimum are added to the
Eq. (45).

4.3 The Cartesian Stiffness in the
X-Direction.

The Cartesian stiffness in the X-direction as a func-
tion of the Y -coordinate at fixed X = 1.0 and Z =

0.3, 0.5, 0.7 is shown in Fig. 26. The Cartesian stiffness
in the Z-direction as a function of the Z-coordinate at
fixed X = 1.0 and Y = −0.3, 0, 0.3, 0.6 is shown in
Fig. 27 and expressed as follows.

k1,1 = k1L
2
2 + k2L

2
2 + k3L

2
3 + k4L

2
3 + k5L

2
3 +

+k6L
2
1 − k2,2 − k3,3 (47)

The minimum of the Cartesian stiffness in the X-
direction is found as a minimum of Eq. (47). However,
the minimum of the stiffness in the X-direction is a
function of Y and Z. Analysis of Eqs. (43) and (45)
shows that the minimum of the stiffness is found at the
limits of the user specified workspace in the Y - and Z-
directions. The minimum of Eq. (47) occurs when k2,2
and k3,3 are maximal. The functional analysis shows
that the Cartesian Stiffness in the Y -direction (k2,2)
increases significantly faster than k3,3 decreases. In ad-
dition, at the Z limits of the user’s specified workspace
k3,3 is maximal. The minimum stiffness in the X-
direction is found in four cross-points given by Y and
Z limits of the user specified workspace.

4.4 Simulations

Figure 28: Links and joints of the existing Gantry-Tau
prototype.

The minimum, maximum and average Cartesian
stiffness in the X-, Y - and Z-directions of the Gantry-
Tau in the entire workspace and the best 70% of the
workspace are given in Table 1. The physical parame-
ters of the Gantry-Tau are given in Table 2.

The links and joints of the working Gantry-Tau pro-
totype are shown in Fig. 28. Table 3 shows the compu-
tational requirements for the four different approaches
on the triangular version of the 3-DOF Gantry-Tau
PKM. The computing time has been normalised to 1
for the fourth approach presented in this paper.

The method based on the functional dependency is
8250 times faster than the method based on the nu-
merical forward kinematics.

5 3-DOF Gantry-Tau Design
Optimisation

The Gantry-Tau multi-objective design optimisation
problem based on the complex search method is ex-
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Table 1: Cartesian stiffness (N/µm) of the 3-DOF
Gantry-Tau in the entire workspace and the
best 70 % of the workspace.

Entire workspace X Y Z
Minimum 26.59 2.45 19.02
Maximum 82.82 50.90 42.29
Average 65.49 13.04 26.32

Best 70 percent workspace X Y Z
Minimum 60.56 2.45 21.45
Maximum 82.82 50.90 42.29
Average 72.76 17.48 28.89

Table 2: The Gantry-Tau physical parameters.

Joint weight 1.0kg

Joint stiffness 50 N
µm

Link weight 1.0kg

Link stiffness 232 N
µm

Platform weight 5.0kg

Young’s modulus 70 ∗ 109 N
m2

pressed as follows.

min F(par) = [ fstif (par) fqual(par) fg(par) ]

(48)

Subject to :

QL4 (par) ≤ Q4 ≤ QU4 (par)

QL3 (par) ≤ Q3 ≤ QU3 (par)

LL3 (par) ≤ L3 ≤ LU3 (par)

LL2 (par) ≤ L2 ≤ LU2 (par)

LL1 (par) ≤ L1 ≤ LU1 (par)

QL1 (par) ≤ Q1 ≤ ISdth
QL2 (par) ≤ Q2 ≤ IShth

where par is a vector of the optimisation parameters.
Each optimisation parameter has its upper and lower

Table 3: Static stiffness computation time for four dif-
ferent methods.

Method Stiffness,Time
Numerical forward kinematics 8250

Jacobian matrix J 109.9
Static matrix H 16.5

Functional dependency 1

limits. The limits of some parameters depend on oth-
ers. A detailed limits analysis is presented in Tyapin
(2009).

A vector of the optimisation parameters par is given
below and described in Section 2.

par = [ Q1 Q2 Q3 Q4 L1 L2 L3 ]

The user’s specifications included into design optimi-
sation are the minimum required Cartesian stiffness
level kmin, minimum distance between two robot’s
links L∗C , maximum installation space in the X-, Y -
and Z-directions ISlth, ISdth and IShth, joint angles
JA, user’s specified workspace in the Y -direction UWa

and in the Z-direction UWb. The objectives vector F
in Eq. (48) includes workspace, collisions, installation
space, statics performances, user’s specifications and
expressed as follows.

fstif (par) =

{
kmin

k2,2min
(par)

, if kmin > k2,2min(par)

1 , if kmin ≤ k2,2min(par)

}
(49)

fqual(par) =
IS

AR(par)−AU (par)−
∑NUM
i=1

δ2i
0.7
AC(par)

(50)

fg(par) =

r∑
i=1

Gi(par)

(51)

AC(par) =

{
1 , if link collisions detected
0 , if no link collisions

}
(52)

where k2,2min(par) is the Cartesian stiffness level
presented in Section 4.1, AR(par) is the maximum
workspace presented in Section 3, AU (par) is the un-
reachable area caused by the collisions between the
platform and support frame presented in Section 3,
AC(par) is the link collision parameter and equals 1
if collisions are detected or 0 if there are no collisions
for the current workspace cell, 0.7 is a parameter of the
sensitivity and equals the workspace and user’s spec-
ified workspace ratio, δ is the workspace integration
parameter, where the minimum workspace cell equals
δ2, NUM is a number of the workspace cells. IS is
the installation space and depends on the parameter
Q4. For the positive Q4 the installation space equals
Q2(Q1 +Q4), for negative Q2Q1.

Increasing the Cartesian stiffness in the Y -direction
is the main task of the Gantry-Tau statics optimisation.
There are some solutions to increase the stiffness. The
first solution is reducing the link lengths while support
frame parameters Q1, Q2 are fixed. The second solu-
tion is increasing the parameters Q1, Q2 while the link
lengths are fixed. The third solution to increase the
stiffness is by shifting the Y -position of the actuators
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T2 and 3. In this paper the Y -position of actuator T2
is variable while the actuator T3 position is fixed. The
fourth solution is a change of the distances between
the points A and B or E, C and D on the platform
as well as the platform length. The last way to in-
crease the stiffness in the Y -direction is to increase Q1

while other parameters are fixed. Note, that the sup-
port frame parameter Q1 defines the Y -coordinate of
the actuator T1. The statics objective in Eq. (49) is a
ratio between the required and minimum stiffness for
the current design, which indicates the level of the ac-
ceptance for the given design.

The quality objective in Eq. (50) includes the
workspace, unreachable area, caused by the platform
kinematic parameters, installation space and collisions
detection. The installation space depends on the sup-
port frame parameters. The workspace and unreach-
able area are the functions of four support frame pa-
rameters, individual link lengths and platform kine-
matics. In Eq. (50) the maximum workspace AR is
reduced by the unreachable areas AU on its bound-
aries and summary of the workspace cells, where the
collisions between the links are detected.

The objective function in Eq. (51) keeps the opti-
misation parameters (constraints) inside of the limits
and penalise an infeasible constraints. The constraints
handling method is given below.

gi = 0, if ParLi ≤ Parcuri ≤ ParUi(53)

gi =
(

ParLi −Par
cur
i

ParLi

)2
, if Parcuri < ParLi (54)

gi =
(

Parcur
i −ParUi
ParUi

)2
, if Parcuri > ParUi (55)

where Parcuri is a current volume of the parameter i,
ParUi is the upper limit of the parameter i, and ParLi
is the lower limit of the parameter i.

The complex search method consists of several
stages:

• Generate the initial population of n designs yn. As
a rule of thumb, the size of the initial population
equals m2, where m is a number of the optimisa-
tion parameters.

• Objectives are evaluated and the worse and the
best designs are identified as yj and yk respectively
in each iteration.

• The centroid of the remaining design is found as
yc in each iteration.

• The worst design yj is mirrored through the cen-
troid yc and a new design is found.

• If the new mirrored through the centroid design
continues to be the worst design, it is moved to-
wards the current best design more or less strongly

depending on how often this had happened in a
row.

In Fig. 29 the implementation of the complex search
method is shown, when a new design is found as the
worst design mirrored through the centroid. The cen-
troid yc and a new design yj new are defined as follows.

yc =

∑n
i 6=j yi

n− 1
yj new = 1.3(yc − yj) + yc (56)

where n is a number of the designs y and yj is the worst
design. When a new design is found through the best
design, some changes are applied.

yc =

∑n
i 6=j yi

n− 1
ε =

n
n0+nrep−1

n0
0

n0 + nrep − 1

yj new = 0.5(yj + εyc + (1− ε)yk)

where yk is the best design, n0 is a tuning parameter,
normally 4− 5, nrep is a number of iterations in a row,
where the design yj has been the worse. Parameters
n0 and nrep are used to switch the algorithm between
the worse and the best designs to find a new one.

Figure 29: Complex search method. The worst design
yj is mirrored through centroid yc.

6 Results

The final optimisation design parameters of the 3-DOF
Gantry-Tau were found using the complex search algo-
rithm and gradient-based function fmincon in inte-
grated Matlab optimisation toolbox. The optimisation
results obtained in this paper are summarised in Table
4 and compared with original design parameters, worse
and average designs.

The initial population size is 50 randomised designs.
The number of evaluations of the objective function
was not fixed and optimisation stopped when the dif-
ference between the best and worst designs was less
than 10−3. Fig. 30 shows the convergence trend of
the main objective function F as a summary of 3
sub-objectives (fqual, fstif and fg) in 2000 iterations.
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Figure 30: The convergence trend of the main objective
function F as a summary of 3 sub-objectives
(fqual, fstif and fg) in 500 iterations.

Table 4: Comparison of the design optimisation re-
sults.

Par Original G− B Worst Average Best
Q1 0.5 0.55 0.458 0.639 0.643
Q2 1 1.02 1.219 0.962 0.954
Q3 0.42 0.46 0.589 0.497 0.496
Q4 0 0.168 0.087 0.215 0.229
L1 1 0.94 1.151 1.184 1.108
L2 1 0.95 0.953 1.038 1.038
L3 1 0.94 1.252 1.02 0.976
F 3.092 2.053 4.753 2.362 1.949
fstif 2.451 1 2.634 1.023 1
fqual 0.641 1.053 0.710 1.162 0.949

Figs. 31 and 32 show the sub-objective’s fqual and fstif
convergency trends respectively in 2000 iterations. The
sub-objectives of the candidate for the best design are
expected as given below. Note that the quality sub-
objective may vary.

fstif = 1 fg = 0

The results would have been difficult to obtain by a
manual design, as the the support frame dimension is
different from Q1 = 2Q2 ≈ Q3, Q4 = 0 which have
been typical manual design choices of the Gantry-Tau
in the past. According to Table 4 the the objective
function was improved by 36.9 %, sub-objectives fqual
and fstif by −48 %, and 59.1 % respectively. The
gradient-based search algorithm can not provide an
appropriate results and reach the global optimum in

Figure 31: The convergence trend of the sub-objective
function fstif 500 iterations.

irregular feasible region. The optimised design was ob-
tained in less than 5 hours on a Pentium Centrino 2
(CPU 2.2 MHz) computer. Furthermore, the approach
proposed in this paper is very simple and easy to be
implement for other PKMs.

7 Conclusions

One of the main contributions of this paper is the com-
bination of the evolutionary multi-objective methodol-
ogy based on the complex search algorithm with geo-
metric descriptions of the Gantry-Tau to optimise the
parallel kinematic structure. The design optimisation
scheme includes the kinematic and elaststatic proper-
ties of the PKM. Dimensional synthesis is a part of
the design and to obtain the targeted performance at
lowest cost, physical design (material selection, bear-
ing design, actuator design etc.) must also be made.
The physical design as a part of the Gantry-Tau design
optimisation is one of the future research directions.

Multi-objective evolutionary algorithms require
a relatively large number of iterations to produce
reasonably good approximations of the optimal set of
the designs. This has motivated the hybridisation of
evolutionary algorithms (global search engines) with
local search engines of different types to reduce a
computational time effort. An optimisation routine for
the platform design according to the required applica-
tions would also be a challenging future research topic.
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