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Abstract

This paper addresses the problem of joint identification of infinite-frequency added mass and fluid memory
models of marine structures from finite frequency data. This problem is relevant for cases where the code
used to compute the hydrodynamic coefficients of the marine structure does not give the infinite-frequency
added mass. This case is typical of codes based on 2D-potential theory since most 3D-potential-theory
codes solve the boundary value associated with the infinite frequency. The method proposed in this
paper presents a simpler alternative approach to other methods previously presented in the literature.
The advantage of the proposed method is that the same identification procedure can be used to identify
the fluid-memory models with or without having access to the infinite-frequency added mass coefficient.
Therefore, it provides an extension that puts the two identification problems into the same framework.
The method also exploits the constraints related to relative degree and low-frequency asymptotic values of
the hydrodynamic coefficients derived from the physics of the problem, which are used as prior information
to refine the obtained models.

Keywords: Identification, Frequency-domain, Marine Structure Models.

1 Introduction

Time-domain models for rigid-body motion simulation
of marine structures are of paramount importance for
the development of training simulators, hardware-in-
the loop testing simulators, wave energy converters and
motion control systems. One way to develop these
models consist of using hydrodynamic codes based
on potential theory to compute frequency frequency-
dependent coefficients, and then use these data to

obtain time-domain models via system identification.
Two approaches can be followed for the latter part.
One approach consists of using the Cummins equation
(Cummins, 1962). The other approach consists of us-
ing the force-to-motion data directly (Perez and Lande,
2006). In this paper, we concentrate on the first ap-
proach.

The Cummins Equation relates the motion of the
marine structure to the wave-induced forces in time
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domain under the assumption of linearity. This equa-
tion is an integro-differential equation that contains
a convolution term representing fluid-memory effects
associated with the dynamics of the radiation forces.
This convolution term is inconvenient for simulation
and also for the analysis and design of motion control
systems. A linear-time-invariant model can be used to
approximate the convolution in the Cummins equation.
To obtain such a linear model, one can apply system
identification. The identification problem can be posed
either in the time or in the frequency domain. Due to
these alternative problem formulations, there has been
a great deal of work reported in the literature—see, for
example, Jefferys et al. (1984), Jefferys and Goheen
(1992), Yu and Falnes (1995), Holappa and Falzarano
(1999), Hjulstad et al. (2004), Kristansen and Egeland
(2003), Kristiansen et al. (2005), Jordan and Beltran-
Aguedo (2004), McCabe et al. (2005), and Sutulo and
Guedes-Soares (2005). Taghipour et al. (2008) provide
a review and a summary of some of the methods.

Perez and Fossen (2008) compared and discussed the
advantages and disadvantages of time- and frequency
domain methods for the identification of the fluid mem-
ory models. It is argued that the frequency-domain
identification results in estimation algorithms that are
easier to implement and use than those resulting from
time-domain formulations. Also, the quality of the
models obtained is, in general, superior to those ob-
tained with the time-domain methods proposed in the
literature. The simplicity of the identification stems
from the fact that the solution to the parameter esti-
mation problem can be based on iterative linear Least
Square (LS) optimisation. Prior knowledge derived
from the hydrodynamics of the problem can be used
to set constraints on the parameters, and the use of
constraints in LS estimation leads, in general, to more
accurate estimates—see e.g., (Gourieroux and Mon-
fort, 1995). On the negative side, It has also been
discussed that the frequency-domain identification ap-
proach can be sensitive to the estimate of the infinite-
frequency added mass coefficient provided by the 3D-
hydrodynamic codes. The need of a reliable estimate of
the infinite-frequency coefficients poses a bigger prob-
lem when using 2D-hydrodynamic codes, since these
codes do not provide such estimate.

In this paper, we present a procedure that extends
the application of frequency-domain identification of
seakeeping models to the case where the hydrodynamic
data does not include the infinite-frequency added
mass coefficient (or one choses not to use it). That
is, only finite frequency data is considered. The model
identified relates the total radiation forces to the ve-
locities, and it allows identifying the infinite-frequency
added mass together with a fluid memory model. The

proposed method is motivated by the work of Kaasen
and Mo (2004), but provides a simpler alternative.

2 A Linear Model based on

Cummins Equation

The equations of motion of a rigid marine structure
in body-fixed coordinates can be linearised about an
equilibrium point and heading and be expressed as

MRB ξ̈ = τ , (1)

where ξ represents the generalised perturbation
position-orientation vector, τ is the vector of gener-
alised forces and moments, and MRB is the positive-
definite rigid-body generalised inertia matrix. The gen-
eralised force vector τ can be separated into three com-
ponents:

τ = τ rad + τ res + τ exc, (2)

where the first component corresponds to the radia-
tion forces arising from the change in momentum of
the fluid due to the motion of the structure, the sec-
ond are restoring forces due to gravity and buoyancy,
and the third component represents the pressure forces
due to the incoming waves. For further background in-
formation about these models see for example Newman
(1977) and Faltinsen (1990).

Cummins (1962) studied the radiation hydrody-
namic problem in an ideal fluid in the time-domain
and found the following representation for the linear
pressure forces:

τ rad = −Aξ̈ −

∫ t

0

K(t − t′)ξ̇(t′) dt′. (3)

The first term in (3) represents forces due the acceler-
ations of the structure, and A is the constant positive
definite added inertia matrix. The second term repre-
sents fluid memory effects that incorporate the energy
dissipation due the radiated waves consequence of the
motion of the structure. The kernel of the convolution
term, K(t), is the matrix of retardation or memory
functions (impulse responses).

By renaming the variables and combining (1), (2),
and (3), we obtain the Cummins Equation:

(M + A)ξ̈ +

∫ t

0

K(t − t′)ξ̇(t′) dt′ + Gξ = τ exc, (4)

Equation (4) describes the motion of the structure for
any wave excitation τ exc(t) provided the linearity as-
sumption is satisfied; and it forms the basis of more
complex models, which can be obtained by adding non-
linear terms to represent different physical effects.
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Table 1: Properties of Retardation Functions

Property Implication on Parametric Models Kik(s) = Pik(s)/Qik(s)

1) limω→0 K(jω) = 0 There are zeros at s = 0.

2) limω→∞ K(jω) = 0 Strictly proper.

3) limt→0+ K(t) 6= 0 Relative degree 1.

4) limt→∞ K(t) = 0 BIBO stable.

5) The mapping ξ̇ 7→ µ is passive K(jω) is positive real (diagonal entries Kii(jω) are positive real.

2.1 Frequency-domain Representation of

the Radiation Forces

When (3) is considered in the frequency domain, it
takes the following form (Newman, 1977; Faltinsen,
1990):

τ rad(jω) = −A(ω)ξ̈(jω) − B(ω)ξ̇(jω). (5)

The parameters A(ω) and B(ω) are the frequency-
dependent added mass and damping respectively. Hy-
drodynamic codes based on potential theories (2D and
3D) are nowadays readily available for the computa-
tion of the frequency-dependent added mass A(ω) and
potential damping B(ω). These data are computed for
a reduced set of frequencies of interest.

Ogilvie (1964) showed using the Fourier Transform
of (4), that the following frequency-domain represen-
tation holds for the retardation functions:

K(jω) = B(ω) + jω[A(ω) − A]. (6)

and also that

A = lim
ω→∞

A(ω), (7)

from which the name infinite-frequency added mass fol-
lows.

2.2 Frequency-domain Identification of the

Convolution Terms

Expression (6) provides a way to compute the fre-
quency response function K(jω) for a finite set of fre-
quencies. These data is the basis for the frequency-
domain identification methods that seek a transfer
function approximation to each entry of K(jω):

K̂ik(s) =
Pik(s)

Qik(s)
, i = 1, . . . , 6, k = 1, . . . , 6. (8)

Apart from the non-parametric frequency-response
data Kik(jω), there is prior information that should

be used as much as possible to refine the search for
the appropriate model and its parameters. This is an
important aspect of any identification problem since,
in general, using prior information to set constraints
on the model structure and parameters leads to more
accurate estimates.

Table 1 summarizes the properties of the retarda-
tion functions and their implications on the paramet-
ric models (8). The left column shows properties in
frequency- and time-domain that derive from the hy-
drodynamics of the problem under considerations. For
example, the first and second property are the are con-
sequence of no waves being generated due to the mo-
tion of the structure at zero and infinite frequency. The
third property derives from the fact that K(0+) equals
the area under the curve of B(ω). The fifth property
is related to the dissipative characteristics of the radi-
ation forces. For further discussion of these properties
and their derivations see Perez and Fossen (2008) and
references therein.

The properties shown on the left column of Table 1
have consequences on the models (8), and these are
shown in the right column of the table. These proper-
ties are related to the structure of the models. Indeed,
we can express the models (8) as

K̂ik(s) =
Pik(s)

Qik(s)
=

prs
r + pr−1s

r−1 + ... + p0

sn + qn−1sn−1 + ... + q0
. (9)

From Table 1, it is known that these transfer functions
have a zero at s = 0, hence, this information can be
taken into account by writing the models as

K̂ik(s) =
slP ′

ik(s)

Qik(s)

=
sl(pmsm + pm−1s

m−1 + ... + p0)

sn + qn−1sn−1 + ... + q0
,

(10)

with the constraint on the order of the polynomials

n = m + l + 1. (11)
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Since, in general, A(0) 6= A(∞), it follows from (6)
that there is unique zero of Kik(s) ar s=0. Therefore,
l = 1, and m = n−2. This is simple to verify from the
non-parametric data since the phase of Kik(jω) at low
frequencies tends to l π/2.

One way to exploit this information in the identifi-
cation process is to consider

K̃ik(jω) =
Kik(jω)

jω
(12)

as data for the identification of P ′

ik(s) and Qik(s) with
the constraints

• deg Qik(s) = n,

• deg P ′

ik(s) = m = n − 2 (l=1).

The identification problem can be posed as a complex
curve fitting problem:

θ
⋆ = argmin

θ

∑

l

wl (ǫ∗l ǫl), (13)

with

ǫl = K̃ik(jωl) −
P ′

ik(jωl, θ)

Qik(jωl, θ)
. (14)

and the vector of parameters , θ is defined as

θ = [pm, ..., p0, qn−1, ..., q0]
T . (15)

The weights wl can be exploited to select how impor-
tant is the fit at different frequency ranges.

The above parameter estimation problem is a non-
linear LS problem in the parameters, which can be
solved using a Gauss-Newton algorithm, or it can be
linearized as indicated in the next section.

2.3 A Linear Iterative Solution

Levy (1959), proposed a linearisation of (13)

θ′⋆ = argmin
θ

∑

l

w′

l (ǫ′∗l ǫ′l), (16)

with

ǫ′l = Qik(jωl, θ)K̃ik(jωl) − Pik(jωl, θ). (17)

This problem is linear in the parameters, and thus easy
to solve. Indeed, using a matrix form we can write

θ′⋆ = arg min
θ

ǫ′∗W ǫ′, (18)

with

ǫ′ = [ǫ′1, . . . , ǫ
′

N ]T , W = diag(w′

1, w
′

2, . . . , w
′

n). (19)

Using this notation, we can write

ǫ′ = Γ − Φθ, (20)

with the obvious definition for the matrices Φ and Γ.
The solution to (18)–(20) is then given by

θ′⋆ = (ΦTWΦ)−1ΦTWΓ. (21)

The linearised problem (16) derives from the non-linear
problem (13) by choosing

wl = w′

l |Q(jωl, θ)|2. (22)

This means that solving (16) can be thought of as solv-
ing (13) with the weights as given in (22). The weights
w′

l normally correspond to a rectangular window.
A problem with this linear formulation is that the

identified transfer function does not in general give a
good fitting. For example, when the data extends over
a large range of frequencies or when Q(s) has poorly
damped complex roots close to the imaginary axis, the
weighting coefficients wl in (22) will weight the fit more
heavily at high frequencies, and also at frequencies
close to the resonant roots. This may give a bias in
the parameter estimates.

Sanathanan and Koerner (1963) proposed a method
to compensate for the bias introduced by the lineari-
sation. This method consists in solving (18)–(20) it-
eratively using as weighting coefficients the inverse of
the denominator Q(jω, θ) evaluated at the previous
estimate. This algorithm can be summarised in the
following:

1. Set W0 = I.

2. Solve θ⋆
k = arg minθ ǫ′∗Wk ǫ′,

3. Set Wk+1 =diag(|Qik(jωl, θk)|−2) go to 2 until
convergence.

This choice of weighting coefficients in step 3 results in
the following problem at each step k of the iteration:

θ⋆
k = argmin

θ

∑

l

∣

∣

∣

∣

∣

Qik(jωl, θ)K̃ik(jωl)

Qik(jωl, θ
⋆
k−1)

−
Pik(jωl, θ)

Qik(jωl, θ
⋆
k−1)

∣

∣

∣

∣

∣

2

, (23)

Normally, after a few iterations (10 to 20), θ⋆
k ≈ θ⋆

k−1;
and thus, the original non-linear LS problem (13) is
approximately recovered.

2.4 Order Selection, Stability, and

Passivity

2.4.1 Oder selection

The order of the transfer functions depends on the hy-
drodynamic characteristics of the vessel; i.e., it depends
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on the hull shape. Based on the properties of the con-
volution terms given in Table 1, it follows that the
minimum order transfer function that satisfies all the
properties is a second order one:

K̂min
ik (s, θ) =

p0s

s2 + q1s + q0
.

Therefore, one can start with this minimum order
transfer function (n=2), and increase the order while
monitoring that the LS cost decreases—or simply by vi-
sual inspection of the fitted frequency response. If the
order of the proposed model is too large, there will be
over-fitting and therefore, the cost will increase; how-
ever before this happens, the value of the cost normally
remains unchanged as one increments the order of the
system.

2.4.2 Stability

The resulting model from the LS minimization may
not necessarily be stable because stability is not en-
forced as a constraint in the optimisation. This can
be addressed by reflecting the unstable poles about
the imaginary axis and re-computing the denominator
polynomial. That is,

• Compute the roots of λ1, . . . , λn of Qik(s, θ̂ik).

• If Re{λi} > 0, then set Re{λi} = - Re{λi},

• Reconstruct the polynomial: Qik(s) = (s −
λ1)(s − λ1) · · · (s − λn).

2.4.3 Passivity

It also follows from the properties given in Table 1,
that the diagonal terms Kii(jω) are passive; i.e., the
real part Bii(ω) must me positive for all frequencies.
For the off-diagonal terms Kik(jω) this may not be the
case however.

The method of LS curve fitting is that it does not
enforce passivity. If passivity is required (i.e., Bik(ω) >
0), a simple way to ensure it is to try different order
approximations and choose the one that is passive. The
approximation is passive if

Re

{

Pik(jωl, θ)

Qik(jωl, θ)

}

> 0. (24)

When this is checked, one should evaluate the transfer
function at low and high frequencies—below and above
the frequencies used for the parameter estimation.

Normally, the low-order approximations models
of the convolution terms given by this method are pas-
sive. Therefore, one can reduce the order and trade-off
fitting accuracy for passivity. A different approach

would be optimise the numerator of the obtained non
passive model to obtain a passive approximation—this
goes beyond the scope of this paper, but the reader is
referred to Damaren (2000) and references therein.

3 Joint Identification of

Infinite-frequency Added Mass

and Fluid Memory Models

Hydrodynamic codes based on 2-D potential theory
normally do not provide the value of the infinite fre-
quency added mass coefficient A = limω→∞ A(ω). In
these cases, we cannot form K(jω) as indicated in (6).

Kaasen and Mo (2004) addressed this problem by
making a partial-fraction expansion of the real part
of K̂ik(s) in terms of ω2. The poles and residuals of
this expansion can be estimated using Least-squares
and the damping data Bik(ω). Then K̂ik(s) can be
obtained by mapping poles and the residuals of the
partial-fraction expansion of its real part into the poles
and residuals of a partial fraction expansion of K̂ik(s)
in terms jω.

In this section, we propose a simpler alternative to
the method of Kaasen and Mo (2004). The proposed
method exploits the knowledge and methods used in
the identification of K̂ik(s) discussed in the Section 2.2,
and therefore, it provides an extension of those results
putting the two identification problems into the same
framework.

On the one hand, the radiation forces in the
frequency-domain given in (5) can be expressed

τrad,i(jω) = −

[

Bik(ω)

jω
+ Aik(ω)

]

ξ̈k(s), (25)

where the expression in brackets gives the complex co-
efficient

Ã(jω) ,
Bik(ω)

jω
+ Aik(ω). (26)

On the other hand, taking the Laplace transform of (3),
and assuming a rational approximation for the convo-
lution term we obtain

τ̂rad,i(s) = −
[

Aik s + Pik(s)
Qik(s)

]

ξ̇k(s), (27)

= −
[

Aik +
P ′

ik
(s)

Qik(s)

]

ξ̈k(s) (28)

This representation can be traced back to the work
of Söding (1982), and it has been used by Xia et al.
(1998) and Sutulo and Guedes-Soares (2005), but with
a different approach to that presented in this paper.

The transfer function in brackets in (28) can be fur-
ther expressed as

ˆ̃Aik(s) =
Rik(s)

Sik(s)
=

AikQik(s) + P ′

ik(s)

Qik(s)
. (29)
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Thus, we can follow the same approach as in Sec-
tion 2.2 and use Least-squares optimisation to estimate
the parameters of the approximation (29) given the
frequency-respose data (26):

θ⋆ = argmin
θ

∑

l

wl (ǫ∗l ǫl), (30)

with

ǫl = Ãik(jωl) −
Rik(jωl, θ)

Qik(jωl, θ)
, (31)

and the constraint that n = degRik(s) = degRik(s).
We also know from Section 2.4 that the minimum order
approximation is of n = 2. Therefore, we can start with
this order and increment to improve the fit if necessary.

It should be noted as well that since we have nor-
malised the polynomial Qik(s) to be monic, then

Âik = lim
ω→∞

Rik(s, θ⋆)

Sik(s, θ⋆)
, (32)

that is, the infinite-frequency added mass Aik is the co-
efficient of the highest order term of Rik(s, θ⋆). Also,
after obtaining Rik(s, θ⋆) and Sik(s, θ⋆), we can re-
cover the polynomials for the fluid-memory model:

Qik(s, θ⋆) = Sik(s, θ⋆),

Pik(s, θ⋆) = Rik(s, θ⋆) − ÂikSik(s, θ⋆).
(33)

4 Model Quality Assessment

In order to assess the quality of the model, one can
compare the frequency-dependant added mass Aik(ω)
and damping coefficients Bik(ω) provided by the hy-
drodynamic code, with those reconstructed from the
estimated retardation function:

B̂ik(ω) = ℜ{K̂ik(s = jω)},

Âik(ω) =
ℑ{K̂ik(s = jω)}

ω
+ Âik.

(34)

Good fitting of these coefficients give confidence in the
estimated values of K̂ik(s) and Âik.

5 Case Studies

To illustrate the use of the method proposed in the
previous section, we consider the hydrodynamic data
of three different vessels:

• Containership,

• FPSO,

• Semi-submersible.

The hydrodynamic data for all vessels is computed with
WAMIT. This code gives an estimate of the value of
the infinite-frequency added mass; and therefore, we
have means to validate the estimated parameters if we
assume the values given by the code are close to the
true parameters.

The containership vessel is the same vessel used
in (Taghipour et al., 2008) (Perez and Fossen, 2008).
The FPSO and the Semi-submersible are the example
demos provided with the Marine Systems Simulator
(www.marinecontrol.org).

For the containership vessel, we have computed only
the part of the model corresponding the vertical-plane
motion (heave and pitch). Table 2 shows the results
of the estimated infinite-frequency added mass coef-
ficients, together with the true values and the abso-
lute relative error. Figure 1 shows the fitting of the
complex coefficient Ã33(jω), the reconstruction of the
added mass and damping based on (34). As we can see
from this figure, the fitting is relatively good.

Tables 3 and 4 show the estimation results in six
degrees of freedom for the FPSO and Semi-submersible
respectively. Note that since the semi-submesible hull
has fore-aft and port-starboard symmetry, there are
less couplings. Figures 2, 3, and 4 show the fit for
particular couplings.

As we can see from the examples used in this section,
the method is able to estimate the infinite-frequency
added mass coefficient with good accuracy and also
to provide high-order fittings as those shown for semi-
submersible.

Table 2: True and Identified Added Mass Coefficients
for a Containership

True Value Identified Rel. Err.

A33= 1.0397e08 Â33= 1.0401e08 0.03 %

A35= 1.1785e09 Â35= 1.1148e09 5.4 %

A55= 3.9617e11 Â55= 3.8841e11 1.95 %

6 Conclusions

This paper addresses the problem of joint identifica-
tion of infinite-frequency added mass and fluid mem-
ory models from finite-frequency data. This problem is
particularly relevant to the cases where the hydrody-
namic code used to compute the coefficients does not
give the infinite frequency added mass coefficient. This
is the case for codes based on 2D potential theory.

This problem has been previously addressed via
partial-fraction expansions by Kaasen and Mo (2004).
The method proposed in this paper presents simpler
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Table 3: Infinite-Freq. Coefficients for the FPSO.

True Value Identified Rel. Err.

A11= 3.045e06 Â11= 3.036e06 0.3 %

A22= 2.124e07 Â22= 2.182e07 2.8 %

A33= 1.7283e08 Â33= 1.731e08 1.5 %

A44= 9.516e9 Â44= 9.508e09 0.1 %

A55= 3.915e11 Â55= 3.919e11 0.1 %

A66= 5.461e10 Â66= 5.584e10 2.2 %

A13= -2.351e06 Â13= -2.304e06 2.0 %

A15= -3.316e08 Â15= -3.304e08 0.4 %

A24= -2.375e07 Â24= -2.5490e07 7.3 %

A26= 3.478e07 Â26= 3.498e07 0.6 %

A35= -3.566e07 Â35= -3.749e07 5.1 %

A46= -2.139e08 Â46= -1.989e08 6.9 %

Table 4: Infinite-Freq. Coefficients for the Semi-
submersible.

True Value Identified Rel. Err.

A11= 7.363e06 Â11= 7.546e06 2.5 %

A22= 3.393e07 Â22= 3.589e07 5.8 %

A33= 5.929e07 Â33= 6.023e07 1.6 %

A44= 6.065e10 Â44= 6.083e10 0.3 %

A55= 5.021e10 Â55= 4.975e10 0.9 %

A66= 3.756e10 Â66= 3.729e10 0.7 %

A13= 8.663e07 Â13= 9.570e7 10 %

A24= -4.624e08 Â24= -5.075e8 9.7 %

alternative to the existing proposal. The advantage of
the method is that the same identification procedure
can be used to identify K̂ik(s) when the Aik is given
and K̂ik(s) and Âik when the latter is not given. The
method also exploits the information related to rela-
tive degree and low-frequency asymptotic values of the
hydrodynamic coefficients derived from the physics of
the problem. This information is used to impose con-
straints on the model structure.
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Figure 1: Fitting results for the containership. Left column: Frequency response Ã33(jω) and estimate. Right
column: Reconstruction of added mass and damping from the identified fluid memory function
K̂33(jω) based on an 3rd order approximation.
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Figure 2: Fitting results for the FPSO. Left column: Frequency response Ã33(jω) and estimate. Right column:

Reconstruction of added mass and damping from the identified fluid memory function K̂33(jω) based
on an 2nd order approximation.
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Figure 3: Fitting results for the FPSO. Left column: Frequency response Ã24(jω) and estimate. Right column:

Reconstruction of added mass and damping from the identified fluid memory function K̂24(jω) based
on an 6th order approximation.
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Figure 4: Fitting results for the semi-submersible. Left column: Frequency response Ã33(jω) and estimate.
Right column: Reconstruction of added mass and damping from the identified fluid memory function
K̂33(jω) based on an 10th order approximation.
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