
Modeling, Identification and Control, Vol. 29, No. 2, 2008, pp. 59–66

Operational space synchronization of two robot

manipulators through a virtual velocity estimate

Erik Kyrkjebø 1 Kristin Y. Pettersen 2

1Department of Applied Cybernetics, SINTEF Information and Communication Technology, N-7465 Trondheim,

Norway. E-mail: Erik.Kyrkjebo@sintef.no

2Department of Engineering Cybernetics, Norwegian University of Science and Technology, N-7491 Trondheim,

Norway. E-mail: Kristin.Y.Pettersen@itk.ntnu.no

Abstract

Two robot manipulators are synchronized in a leader-follower scheme where only joint position measure-
ments of the leader are available. A virtual manipulator is designed to provide a velocity estimate of
the unknown leader velocity to the control law of the follower. The closed-loop errors are shown to be
uniformly globally practically asymptotically stable.∗
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1 Introduction

Leader-follower synchronization control can be consid-
ered as a tracking control problem where the refer-
ence is a physical object with dynamics that is sub-
ject to disturbances and actuator limitations. For the
particular case of a robot manipulator arm, the ac-
tual states of the leader manipulator may diverge from
its ideal path due to external disturbances, unmod-
eled dynamics or friction phenomenas, or actuator sat-
urations. Under these constraints we cannot guaran-
tee that the leader manipulator tracks its desired path
perfectly, and thus knowledge of the desired path of
the reference may not be enough to assure synchro-
nization in the leader-follower system. The synchro-
nization control problem is often complicated by the
fact that frequently only position measurements are
available or reliable. In practice, robot manipulators
are often equipped with high-precision position sensors
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jebø and Kristin Y. Pettersen, ”Operational space synchro-
nization of two robot manipulators through a virtual velocity
estimate”, Proceedings of 46th IEEE Conference on Decision
and Control, New Orleans, USA, December 2007.

such as encoders, but velocity or acceleration measure-
ments are not so readily available, and are often con-
taminated with noise when obtained from low-quality
tachometers or through numerical differentiation tech-
niques. Model based observers utilize the nonlinear
dynamic model of the manipulator to reconstruct ve-
locity and acceleration information, and may produce
estimates less contaminated by noise than simple differ-
entiation techniques. Differentiation and model based
estimation approaches to the problem of output tra-
jectory control of robot manipulators can be found ex-
tensively in literature (Kelly, 1993; Loŕıa and Ortega,
1995; De Queiroz et al., 1997; Loŕıa and Melhem, 2002).
However, the dynamic model of a robot manipulator is
not always known, and thus alternative approaches to
model based observers must be employed to estimate
the velocity and acceleration of the manipulator. In the
following, we propose to utilize the known kinematics
of a manipulator with unknown dynamics to provide a
velocity estimate available to the synchronization con-
trol law. The velocity estimate is constructed using
a virtual manipulator that is stabilized to the leader
manipulator through a kinematic control procedure.
Hence, the available information (kinematics) is uti-
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lized to estimate the states of the leader manipulator,
but the requirement of knowing the parameters of the
more complex dynamic model is lifted.

Synchronization is the theory of time conformity
between systems, and can be found both as a nat-
ural phenomenon in nature (Camazine et al., 2001)
as well as the controlled synchronization of artificial
systems as reported in Huygens (1673) for a pair of
pendulum clocks, and later revisited by Blekhman
(1971) in works on vibromechanics. It can be seen
as a type of state cooperation among two or more
(sub)systems, and has received increasing attention in
the control community (Fradkov et al., 2000; Nijmeijer
and Rodriguez-Angeles, 2003). The synchronization
scheme can be divided into the coordinated synchro-
nization scheme where an external reference is the syn-
chronization goal, and an internal cooperative scheme
where all participants are responsible for synchroniza-
tion. Both a coordinated and a cooperative synchro-
nization control scheme for robot manipulators were
presented in Nijmeijer and Rodriguez-Angeles (2003)
using a controller-observer scheme with only position
measurements to estimate unmeasured state informa-
tion. The coordinated leader-follower scheme (Nijmei-
jer and Rodriguez-Angeles, 2003; Rodriguez-Angeles
and Nijmeijer, 2001) depends on a leader manipula-
tor to govern the motion of the follower manipula-
tor, and thus only the follower is responsible for ap-
plying the synchronization control action necessary to
coordinate the two manipulators. This relieves the
information requirements on the leader manipulator,
and suggests that synchronization can be achieved be-
tween manipulators even though the parameters of the
dynamical model of one of the manipulators are un-
known. The coordinated synchronization approach of
Rodriguez-Angeles and Nijmeijer (2001) was later used
in Kyrkjebø and Pettersen (2003) to synchronize two
ships in a leader-follower underway replenishment op-
eration. The controller-observer approach closely in-
terlinks the stability of both the controller and the ob-
servers, and it can thus be difficult and tedious to tune
the control gains satisfactorily.

The virtual system design has been utilized both as
an abstraction vehicle (Crowley, 1989; Salichs et al.,
1991) and as an intermediate level between the desired
trajectories of a system and the controller. The vir-
tual system can be considered as a low-level controller
in a two-level control structure (Fradkov et al., 1991;
Gusev et al., 1998), and has been used in Sakaguchi
et al. (1999) as the mapping of a physical vehicle on
an entry-ramp on a main lane in order to do merging
control of autonomous mobile robots, and in Egerstedt
et al. (2001) to control a reference point on a planned
path. The latter approach has been utilized in Hu et al.

(2003) to combine the task of path following and ob-
stacle avoidance, and in Cheng et al. (2004) with a
modified goal point to improve practical robustness to
path diversity.

In the proposed observer-controller design of Nijmei-
jer and Rodriguez-Angeles (2003) and Kyrkjebø and
Pettersen (2003), the stability analysis and practical
tuning of the scheme is involved due to the inherent
coupling in between the observers and controller. In
order to facilitate both the tuning of the controller and
the stability analysis in a leader-follower synchroniza-
tion scheme, Kyrkjebø et al. (2006) proposed a vir-
tual vehicle approach to the underway replenishment
operation, which required no additional information
on leader states or model parameters. In the follow-
ing, we adopt the results of Kyrkjebø et al. (2006)
to the n-degree-of-freedom control of robot manipula-
tors in the operational (cartesian) space. The control
scheme utilizes a virtual manipulator as a state estima-
tor of the leader manipulator velocity and acceleration,
and yields uniform global practical asymptotic stabil-
ity (Chaillet, 2006) of the closed-loop errors, meaning
asymptotic stability to a ball about the origin that can
be made arbitrarily small by a suitable choice of gains.

We will first present the general system model and
the problem statement and approach in Sect. 2, and
then the virtual manipulator design in Sect. 3. The
synchronization controller is presented in Sect. 4, sta-
bility is addressed in Sect. 5 while simulations are pre-
sented in Sect. 6. Final remarks and conclusions are
reported in Sect. 7.

2 Preliminaries

We consider leader-follower synchronization control for
fully actuated robot manipulators with n ≤ 6 joints,
where the only available measurement from the leader
is the position vector. The leader robot is driven by
an input torque τm that is designed to drive the op-
erational space coordinates xm, ẋm ∈ R

m to a desired
trajectory xd, ẋd ∈ R

m. The input torque of the leader,
as well as the dynamical model and its parameters, is
considered unknown and thus prevents us from design-
ing a model based observer for the leader. There is no
guarantee that the leader follows the desired trajectory
perfectly, and thus the follower cannot simply track
the desired trajectory xd, ẋd, but must synchronize its
states x, ẋ to the leader states xm, ẋm to achieve coor-
dination.

In the following, the minimum and maximum eigen-
value of a positive definite matrix M will be denoted
as Mm and MM , respectively. The norm of a vector x

is defined as ‖x‖ =
√

xT x and the induced norm of a
matrix M is ‖M‖ = max‖x‖=1 ‖Mx‖.
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2.1 System model and properties

The dynamic model of a robot manipulator in the joint
space q ∈ R

n can be written as (Sciavicco and Sicil-
iano, 1996)

Mq (q) q̈ + Cq (q, q̇) q̇ + fq (q̇) + gq (q) = τq (1)

where q are generalized coordinates, Mq (q) is the pos-
itive definite inertia matrix, Cq (q, q̇) is the matrix of
Coriolis and centripetal forces, fq (q̇) is a general func-
tion of friction forces, and gravitational forces are given
in gq (q). The differential kinematic relation

ẋ = J (q) q̇ (2)

relates the joint space from the operational space x ∈
R

m of Khatib (1987). We will assume that m is equal
to the number of joints n, and thus the manipulator
acts in nonsingular configurations and x constitutes a
set of generalized coordinates. The dynamic model of
the manipulator in the operational space can thus be
written as Khatib (1987)

M (x) ẍ + C (x, ẋ) ẋ + f (x, ẋ) + g (x) = τ (3)

where the inertia matrix M (x) is positive definite and
the Coriolis and centripetal matrix C (x, ẋ) is defined
in terms of Christoffel symbols. The dissipative vector
f (x, ẋ) collects friction forces that are nonlinear in ve-
locity and that may also depend on joint angles, while
g (x) is the vector of gravitational forces. The control
input vector τ is generalized forces and moments acting
on the system. The model (3) is an Euler-Lagrange sys-
tem (Kyrkjebø and Pettersen, 2005), and has a number
of properties (Ortega and Spong, 1989)

P1 The positive definite true inertia matrix M (x) sat-
isfy 0 < Mm ≤ ‖M (x)‖ ≤ MM < ∞, where Mm

and MM are positive constants.

P2 The inertia matrix M (x) is differentiable in x and

yT
(
Ṁ (x) − 2C (x, ẋ)

)
y = 0, ∀ x,y ∈ R

n.

P3 The Coriolis term in Christoffel symbols satis-
fies C (x,y) z = C (x, z)y, and also ‖C (x, ẋ)‖ ≤
CM‖ẋ‖.

We will also make the following assumption on the dis-
sipation vector f (x, ẋ) ẋ

Assumption 1 The dissipation vector f (x, ẋ) is lin-
ear in velocity and lower bounded by a non-negative
constant Fm;

f (x, ẋ) = F (x) , ‖F (x)‖ ≥ Fm ≥ 0. (4)

Thus, we restrict the friction in the system to linear
(viscous) friction.

The relationship between joint angles q and opera-
tional space coordinates x is known through the direct
kinematics equation. In this paper, we will assume that
the kinematic relationships for both manipulators are
known.

Assumption 2 The direct kinematic equation

x = d (q) (5)

is known for both manipulators. The nonlinear func-
tion d (·) allows computation of the operational space
variables from knowledge of the joint space variables.

Note that the proposed virtual manipulator design
of this section coordinates two robot manipulators in
the operational space, and not in the joint space as
in Rodriguez-Angeles and Nijmeijer (2001) and Bond-
hus et al. (2004). Hence, we formulate the coordina-
tion scheme in the task space of the robot manipula-
tor, which is more suitable to applications where the
robot manipulators should follow a geometrically speci-
fied motion, or in applications where two robots should
manipulate large rigid structures. Thus, we inherently
assume that the image of the forward kinematics of
the leader must be contained within the image of the
forward kinematics of the follower. Note also that if
measurements of the operational space position vari-
ables x and xm are available, the virtual manipulator
design does not require that the direct kinematic func-
tion f (·) is known explicitly.

2.2 Problem statement

The problem of synchronizing two robot manipulators
are considered in the operational (cartesian) space co-
ordinates. The manipulators are fully actuated, and
the number of joints (all revolute) n are equal to the
number of degrees of freedom m in the operational
space.

The dynamic model of the leader manipulator with
mass and inertia parameters is considered unknown, as
well as the velocity and acceleration of the leader ma-
nipulator. The position and orientation of the leader
manipulator qm is known and measured, and the kine-
matic equation xm = fm (qm) and the differential
kinematics relationship through the Jacobian matrix
Jm (qm) is considered known. No knowledge of the
desired trajectory of the leader is assumed.

The parameters of the dynamic model of the follower
manipulator are considered known, as well as its posi-
tion and orientation vector q. We assume that the ve-
locity vector q̇, the kinematic relationship f (q) and dif-
ferential kinematic relationship through the Jacobian
matrix J (q) in (2) are known for the follower manip-
ulator. In practice, this relates to the problem of syn-
chronizing a known robot manipulator to an unknown
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Leader

Virtual

Follower

Figure 1: Leader, follower and virtual manipulator

robot manipulator where only the length and type of
the joints are known, and where only the joint posi-
tion and orientation vector qm is measured. However,
the virtual manipulator approach is easily adopted to
the design in Kyrkjebø and Pettersen (2006) where the
restriction of knowing the velocity of the follower ma-
nipulator is lifted.

2.3 Problem approach

To solve the synchronization problem without velocity
measurements of the leader, we will utilize the concept
of a virtual manipulator that stabilizes itself to the
leader manipulator, see Figure 1. This virtual manipu-
lator is based on the differential kinematic relationship
of the leader through the Jacobian relationship

xv = Jm (qv) q̇v (6)

and uses the virtual joint velocity q̇v as a control input.
In this paper, we adopt the leader manipulator as a mo-
tion reference for the follower manipulator to achieve
(x, ẋ) → (xm, ẋm), and thus the two manipulators will
perform the same movement in the operational space.

3 Virtual manipulator design

The only measurement available from the leader is the
joint position vector qm which translates directly into
the position and orientation vector xm through the re-
lationship in (5). Since we have no information about
the parameters of the dynamic model or of the control
input to the leader, we are precluded from designing
a model-based observer for the leader states. We pro-
pose to design a virtual manipulator as an intermediate
controlled manipulator that is stabilized to the leader
manipulator based only on position measurement feed-
back.

As in Gusev et al. (1998), in the first step (kine-
matic level) we consider the velocities q̇v of the virtual
manipulator as the control inputs, and design them in
such a way that we ensure convergence of the virtual
trajectories to the leader trajectories. In a way, we can
consider the trajectories xv and velocities q̇v as esti-
mates of xm and q̇m, that is, the virtual manipulator
is a form of kinematic estimator of the leader states
through the position feedback loop.

The virtual manipulator is defined by its differential
kinematic model in (6), and based on practical con-
siderations we will assume that the leader velocity is
bounded.

Assumption 3 The velocity of the leader manipulator
is bounded as

sup
t

‖q̇m‖ = VM < ∞ (7)

with a known upper bound VM .

We can define the virtual manipulator tracking errors
in the operational space as

ev = xv − xm = dm (qv) − dm (qm) (8)

and

ėv = ẋv − ẋm = Jm (qv) q̇v − Jm (qm) q̇m. (9)

We propose the following virtual control law

q̇v = −J−1

m (qv)L1ev − J−1

m (qv)L2z (10)

where L1 and L2 are symmetric positive gain matrices,
and

ż = ev (11)

to add an integral term. The closed-loop equations can
be written in the following form

ėv = −L1ev − L2z − Jm (qm) q̇m. (12)

Theorem 1 The closed-loop error dynamics of system
(6) satisfying Assumption 3, with the control law (10),
are uniformly globally practically asymptotically stable.

Proof 1 Consider the following Lyapunov function
candidate

Vv (z, ev) =
1

2
eT

v ev +
1

2
zT L2z +

1

2
zTev (13)

which is positive definite for L2,m > 1/4. Differentiat-
ing along the closed-loop trajectories we get

V̇v (z, ev) =− eT
v

(
L1−

1

2
I

)
ev − 1

2
zT L2z − 1

2
zTL1ev

−
(
eT

v +
1

2
zT

)
Jm (qm) q̇m.

(14)
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Using (7), and the relation 2|ab| ≤ (λa2 + b2/λ) for
any real a, b and any positive λ, it follows that

V̇v (z, ev)≤−
(
L1,m− 1

2
−λ

4
L1,M− 3VM

2 ‖(ev, z)‖

)
‖ev‖2

− 1

2

(
L2,m − 1

2λ
L1,M − 3VM

‖(ev, z)‖

)
‖z‖2

(15)

since ‖J (m·)‖ ≤ 1, and where λ designates any positive
constant. We design the gain matrices L1 and L2 in
such a way that Li,M ≤ ℓ Li,m, i ∈ {1, 2}, for some
ℓ > 0. Then, letting λ = 2/ℓ and δv be any given
positive constant, we can see that any gain matrices
satisfying

L1,m =3 +
3VM

δv

(16)

L2,m =2 +
3ℓ2

4
+

(
1 +

ℓ2

4

)
3VM

2δv

(17)

generate the following bound of the derivative of Vv:

‖ev‖2
+ ‖z‖2 ≥ δ2

v ⇒ V̇v(z, ev) ≤ −‖ev‖2 − ‖z‖2
.

(18)

Note that Vv is positive definite and radially unbounded
for this choice of gains. Due to the linear dependency
of L1,m and L2,m in 1/δv, we conclude using the re-
sults in Chaillet and Loŕıa (2005) that (11-12) is uni-
formly practically asymptotically stable, which implies
that the region to which solutions converge – from any
initial condition – can be reduced as much as desired
by enlarging L1,m and L2,m.

4 Follower vehicle design

Using the velocity information from the virtual manip-
ulator design of Sect. 3, we can design a synchroniza-
tion controller for the follower manipulator to follow
the virtual manipulator of (6). Note that the joint ve-
locity q̇v is now known through the definition of the
control law of (10), and through the differential kine-
matic relationship of (6) we can obtain the velocity ẋv

of the virtual manipulator. Furthermore, due to our
design of the virtual controller (10), we can also obtain
an expression for the acceleration of the virtual ma-
nipulator which will be partially available for control
purposes. In our synchronization approach, we will as-
sume that the velocity of the follower manipulator is
measured and known.

The variables available from the virtual manipulator
design to the synchronization controller are

ẋv =Jm (qv) q̇v = −L1ev − L2z (19)

ẍv = − L1ėv − L2ev

=
(
L2

1
− L2

)
ev + L1L2z + L1Jm (qm) q̇m. (20)

Define the synchronization errors as

e = x − xv, ė = ẋ − ẋv, ë = ẍ − ẍv. (21)

Using the sliding surface from Slotine and Li (1987) as
a passive filtering of the virtual vehicle states, we can
design a virtual reference trajectory as

ẏv = ẋv − Λe (22)

ÿv = ẍv − Λė (23)

where Λ > 0 is a design parameter. Let us denote

ÿ′
v =

(
L2

1
− L2

)
ev + L1L2z − Λė (24)

and thus

ÿv = ÿ′
v + L1Jm (qm) q̇m (25)

where ÿ′
v is available for control design. Defining

s = ẋ − ẏv = ė + Λe (26)

as a measure of tracking, and using the relationship
ẋ = s− ẏv we can rewrite (3) as

M (x) ṡ =−C (x, ẋ) s−F (x) s+τ (27)

−M (x) ÿv−C (x, ẋ) ẏv−F (x) ẏv−g (x) .

We propose the following control law

τ=M(x) ÿ′
v +C (x, ẋ) ẏv+F (x) ẏv+g (x)−Kds−Kpe

(28)

where Kp and Kd are symmetric positive gain matri-
ces. Consider the following Lyapunov function candi-
date

Ve (e, s) =
1

2
sTM (x) s +

1

2
eTKpe. (29)

Differentiating along the closed-loop trajectories we get

V̇e (e, s) = − sT [F (x) + Kd] s− eTΛTKpe

− sTM (x)L1Jm (qm) q̇m.
(30)

Let δe be any given positive constant. Then, it holds
that, for all ‖e‖2 + ‖s‖2 ≥ δ2

e ,

V̇e (e, s) ≤
[
Fm + Kd,m − 1

2δe

MML1,M

]
‖s‖2

−
[
ΛmKp,m − 1

2δe

MML1,M

]
‖e‖2

.

(31)

Proceeding as in Section 3 and observing that the
choice of Kd,m and Kp,m can be made as an affine
function of 1/δe, we can conclude uniform global prac-
tical asymptotic stability.
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5 Stability analysis of the overall

system

The control law of the follower synchronizes the fol-
lower manipulator to the virtual manipulator based on
a computed virtual reference velocity, and the virtual
manipulator is in turn stabilized to the leader manip-
ulator through the virtual control law.

Theorem 2 Consider the robot manipulator model (3)
satisfying Properties 1-3, the virtual control law (10)
and the synchronization controller (28). Under As-
sumptions 1-3, the overall closed-loop system is uni-
formly globally practically asymptotically stable.

Proof 2 Take as a positive definite Lyapunov function
candidate

V (η̃) =
1

2
η̃TP η̃ (32)

where

η̃ =
[
eT , sT , zT , eT

v

]T
(33)

and

P =




Kp 0 0 0
0 M (x) 0 0
0 0 L2

1

2
I

0 0 1

2
I I


 (34)

is a composition of the Lyapunov functions (13) and
(29) of Sect. 3 and 4. Differentiating along trajectories
yields

V̇ (η̃) = −η̃TQ η̃ + β (s, z, ev, q̇m) (35)

where

Q =




ΛTKp 0 0 0
0 F (x) + Kd 0 0
0 0 1

2
L2

1

4
L1

0 0 1

4
L1 L1 − 1

2
I


 (36)

and

β (s, z, ev, q̇m)=−sTM (x)L1Jm (qm) q̇m (37)

− 1

2
zT Jm (qm) q̇m − eT

v Jm (qm) q̇m.

Let δ be any given positive constant, and we have the
following property

‖η̃‖ ≥ δ ⇒ (38)

‖β (s, z, ev, q̇m)‖≤VM

δ

(
MML1,M‖s‖2

+
‖z‖2

2
+
‖ev‖2

2

)

Consequently, in view of (15) and (31), and repeating a
similar reasoning while choosing the minimum eigen-
value of the gain matrices Kp, Kd, L1 and L2 large
enough, it holds that

V̇ (η̃) ≤ −‖η̃‖2 , ∀ ‖η̃‖ ≥ δ.

Since the dependency on the bound on β (and on the
gain matrices) in 1/δ is again affine, uniform global
practical asymptotic stability of η̃ follows.

6 Simulation study

The operational space synchronization scheme with
virtual velocity estimates was tested in a simulation
environment in MATLAB using a two-link manipula-
tor structure from Sciavicco and Siciliano (1996). The
leader manipulator tracked an operational space rec-
tilinear path from xd (0) = [0.2, 0.2]T to xd (tf ) =

[0.1,−0.6]
T

with a trapezoidal velocity profile and a
trajectory duration of tf = 25 s. The maximum ve-
locity was restricted to 1 m/s, and an inverse dynamic
trajectory tracking scheme in the operational space was
employed for the leader manipulator.

The leader robot parameters were taken from Sciav-
icco and Siciliano (1996, Section 6.7) as a1 = a2 = 1
m, l1 = l2 = 0.5 m, ml1 = ml2 = 50 kg, Il1 = Il2 = 10
kg·m2, kr1

= kr2
= 100, mm1

= mm2
= 5 kg, and

Im1
= Im2

= 0.001 kg·m2. Data for the two equal
joint actuators were chosen as Fm1

= Fm2
= 0.001

N·m·s/rad, Ra1
= Ra2

= 10 ohm, kt1 = kt2 = 2
N·m/A, and kv1

= kv2
= 2 V·s/rad. The control

gains of the leader trajectory tracking controller were
Kp = 200 I and Kd = 150 I.

The follower parameters were chosen equal to the
leader parameters, apart from a1 = a2 = 1.2 m. The
control gains were chosen as L1 = 1 I, L2 = 1 I for the
virtual manipulator, and Kp = 700 I, Kd = 450 I for
the follower manipulator using a sliding surface gain of
Λ = 0.1 I. Plots of the errors are shown in Figure 2,
and the initial states were chosen as x (0) = [0.5, 0.5]

T

for the follower, xv (0) = [0.9, 0.0]
T

for the virtual ma-

nipulator and as xm (0) = [0.7, 0.2]
T

for the leader to
illustrate convergence.

The virtual manipulator control errors eν = xv−xm,
the coordination control errors e = x−xv and the over-
all control errors x−xr are seen in Figure 2 to be prac-
tically asymptotically stable. Small oscillations in the
virtual velocity errors are observed due to the unknown
velocity of the leader manipulator, but due to the prac-
tical stability property of the closed-loop system the
magnitude of these oscillations can be arbitrarily re-
duced within control saturation limits by enlarging the
control gains. Simulations when only utilizing an ap-
proximately known model of the follower by assuming
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Figure 2: The total errors x−xm in the upper row, the virtual manipulator control errors xv−xm in the middle
row, and the coordination errors x− xv in the lower row, with positions [m] on the left and velocities
[m/s] on the right.

that the friction term F (x) is zero show similar results
as illustrated in Figure 2, but are left out due to space
constraints.

7 Concluding remarks

We have presented a control design approach to opera-
tional space synchronization of two robot manipulators
were the velocity of the leader robot is unknown. The
use of a virtual manipulator as a velocity estimator for
the leader separates the state estimator from the syn-
chronization controller design, thus allowing for a more
intuitive gain tuning than for a closely linked observer-
controller scheme. The overall control scheme is shown
to be uniformly globally practically asymptotically sta-
ble.

Future work aims towards testing the scheme experi-
mentally to investigate the behaviour and performance
in a realistic environment.
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Chaillet, A. and Loŕıa, A. Uniform semiglobal asymp-
totic stability for time-varying nonlinear cascaded
systems. In Proc. IFAC World Congress. 2005 .

Cheng, G., Gu, J., Bai, T., and Majdalawieh, O. A
new efficient control algorithm using potential field:
extension to robot path tracking. In Canadian Conf.

65



Modeling, Identification and Control

on Electrical and Computer Engineering. 2004 pages
2035 – 2040.

Crowley, J. Asynchronous control of orientation and
displacement in a robot vehicle. In Proc. 1989 IEEE
Int. Conf. on Robotics and Automation. Scottsdale,
AZ, USA, 1989 pages 1277 – 1282.

De Queiroz, M., Hu, J., Dawson, D., and Burg, S.,
T.and Donepudi. Adaptive position/force control of
robot manipulators without velocity measurements:
theory and experimentation. IEEE Trans. on Sys-
tems, Man and Cybernetics, Part B, 1997. 27(5):796
– 809.

Egerstedt, M., Hu, X., and Stotsky, A. Control of mo-
bile platforms using a virtual vehicle approach. IEEE
Trans. on Automatic Control, 2001. 46(11):1777 –
1782.

Fradkov, A., Gusev, S., and Makarov, I. Robust speed-
gradient adaptive control algorithms for manipula-
tors and mobile robots. In Proc. 30th IEEE Conf.
on Decision and Control. Brighton, England, 1991
pages 3095 – 3096.

Fradkov, A. L., Nijmeijer, H., and Pogromsky, A. Y.
Controlling Chaos and Bifurcations in Engineering
Systems, chapter Adaptive observer-based synchro-
nization, pages 417 – 438. CRC Press, 2000.

Gusev, S., Makarov, I., Paromtchik, I., Yakubovich,
V., and Laugier, C. Adaptive motion control of a no-
holonomic vehicle. In Proc. 1998 IEEE Int. Conf. on
Robotics and Automation. 1998 pages 3285 – 3290.

Hu, X., Alarcon, D., and Gustavi, T. Sensor-based
navigation coordination for mobile robots. In Proc.
42nd IEEE Conf. on Decision and Control, 2003.
2003 pages 6375 – 6380.

Huygens, C. Horoloquium Oscilatorium. Paris, France,
1673.

Kelly, R. A simple set-point robot controller by using
only position measurements. In Proc. IFAC World
Congress, volume 6. Sydney, Australia, 1993 pages
173 – 176.

Khatib, O. A unified approach for motion and force
control of robot manipulators: The operational
space formulation. IEEE Journal of Robotics and
Automation, 1987. RA-3(1):43 – 53.

Kyrkjebø, E., Panteley, E., Chaillet, A., and Pettersen,
K. Y. Group Coordination and Cooperative Control,
volume 336 of Lecture Notes in Control and Informa-
tion Systems, chapter A Virtual Vehicle Approach to

Underway Replenishment, pages 171 – 189. Springer
Verlag, Tromsø, Norway, 2006.

Kyrkjebø, E. and Pettersen, K. Y. Ship replenishment
using synchronization control. In Proc. 6th IFAC
Conf. on Manoeuvring and Control of Marine Craft.
Girona, Spain, 2003 pages 286–291.

Kyrkjebø, E. and Pettersen, K. Y. Output synchroniza-
tion control of Euler-Lagrange systems with nonlin-
ear damping terms. In Proc. 44th IEEE Conf. on
Decision and Control and European Control Conf.
Sevilla, Spain, 2005 pages 4951 – 4957.

Kyrkjebø, E. and Pettersen, K. Y. A virtual vehicle ap-
proach to output synchronization control. In Proc.
45th Conf. on Decision and Control. San Diego,
USA, 2006 .
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