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Abstract

This paper reports the development and preliminary experimental evaluation of a model-aided inertial
navigation system (INS) for underwater vehicles. The implemented navigation system exploits accurate
knowledge of the vehicle dynamics through an experimentally validated mathematical model, relating the
water-relative velocity of the vehicle to the forces and moments acting upon it. Together with online current
estimation, the model output is integrated in the navigation system. The proposed approach is of practical
interest both for underwater navigation when lacking disparate velocity measurements, typically from a
Doppler velocity log (DVL), and for systems where the need for redundancy and integrity is important,
e.g. during sensor dropouts or failures, or in case of emergency navigation. The presented results verify
the concept that with merely an addition of software and no added instrumentation, it is possible to
considerably improve the accuracy and robustness of an INS by utilizing the output from a kinetic vehicle
model. To the best of our knowledge, this paper is the first report on the implementation and experimental
evaluation of model-aided INS for underwater vehicle navigation.
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1 Introduction

Deciding which sensor outfit to include in an underwater
navigation system is important both from a performance
and cost perspective. A typical sensor outfit may consist
of standard components such as compass, pressure sen-
sor, and some class of inertial navigation system (INS).
In addition, various sources of position aiding may be
available, for instance long baseline (LBL) or ultra short
baseline (USBL) acoustics, terrain-based techniques,
and surface GPS. For an extensive survey on sensor
systems and underwater navigation the reader should
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refer to Kinsey et al. (2006) and references therein.
In practice, a submersible does not have continuous

position updates, hence a navigation solution based
solely on INS, and in particular low-cost INS, will have
an unacceptable position error drift without sufficient
aiding. While most high-end systems also incorporate a
Doppler velocity log (DVL) in their sensor suite in order
to limit the drift, this additional expense is not always
feasible for low-cost systems. Even when a DVL unit
is included, situations may also occur where it fails to
work or measurements are discarded due to decreased
quality. In either case, in the absence of DVL mea-
surements, alternative velocity information is required
to achieve an acceptable low drift navigation solution
between position updates. One possibility is to utilize
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mathematical models describing the vehicle dynamics,
in conjunction with online sea current estimation.

The purpose of this paper is twofold. First, with the
aim of providing model-based velocity measurements,
an experimentally validated kinetic vehicle model is
presented. Second, the potential use of such a model
as a mean for aiding the INS of an underwater vehicle
is investigated, and the effectiveness of the integrated
navigation system is evaluated on experimental data.

To date, the use of model-based state estimators for
underwater navigation has primarily focused on ap-
plying purely kinematic models, i.e. models describing
the vehicle motion without the consideration of the
masses or forces that bring it about. State estimators
based on kinetic underwater vehicle models are rare.
Model-based nonlinear deterministic observers utiliz-
ing the knowledge of the vehicle dynamics together
with disparate measurements are proposed in Kinsey
and Whitcomb (2007); Refsnes et al. (2007). Both pa-
pers evaluate their observer using experimental data.
As for model-aided INS, some simulation studies have
been reported for aerial vehicles (Bryson and Sukkarieh,
2004; Koifman and Bar-Itzhack, 1999; Vasconcelos et al.,
2006). To the best of our knowledge however, no results
have been reported through simulations or experiments,
where the output from a kinetic vehicle model is used
to aid the INS of an underwater vehicle.

Note that as studied herein, the integration of vehicle
models in underwater navigation systems is of partic-
ular interest for systems without a DVL unit. Other
important implications involve systems (also having a
DVL) where the need for redundancy and integrity is
important, e.g. during sensor dropouts or sensor failures,
or in case of emergency navigation.

The remainder of this paper is organized as follows.
Section 2 presents the mathematical vehicle model uti-
lized in this paper. The integrated navigation system
with model aiding included is described in Section 3, in-
cluding a brief discussion on assumptions applied during
development. Section 4 and 5 describe the experimental
setup and experimental results, where in particular, the
solutions from the navigation systems with and without
model aiding in place are compared.

2 Modeling

The steps involving development and validation of the
finite-dimensional mathematical vehicle model utilized
in this paper have been rigorously treated in Hegrenæs
et al. (2007a). For an extended review and historical
recap of work related to modeling of underwater vehicles
the reader should refer to the same paper and references
therein. The main results are presented in the following.

2.1 Preliminaries

In cases where a vehicle operates in a limited geograph-
ical area, it is common to apply a flat Earth approxi-
mation when describing its location. Let {m} denote a
local Earth-fixed coordinate frame where the origin is
fixed at the surface of the WGS-84 Earth ellipsoid, and
the orientation is north-east-down (NED). Similarly, let
{w} denote a reference frame where the origin is fixed
to, and translates with the water (due to current). The
current is assumed irrotational, hence {w} does not
rotate relative to {m}. The frame {b} is a body-fixed
frame where the axes coincide with the principal axes of
the vehicle. The origin is located at the vehicle center of
buoyancy. A general expression of the vehicle position
can now be written as

pm
mb = pm

mw + pm
wb

= pm
mw + Rm

w pw
wb, (1)

where pm
wb ∈ R3 is the vector from the origin of {w} to

the origin {b}, decomposed in {m}, and Rm
w ∈ SO(3)

is the coordinate transformation matrix from {w} to
{m}. The velocity of {b} relative to {m}, represented
in {m}, is given as vm

mb := ṗm
mb, or decomposed in {b}

as vb
mb := Rb

mvm
mb. The interpretation of the other

variables follows directly. Taking the time derivative of
both sides of (1) yields

ṗm
mb = ṗm

mw + Ṙm
w pw

wb + Rm
w ṗw

wb

= ṗm
mw + Rm

w ṗw
wb, (2)

where Ṙm
w equals zero due to the assumption of irrota-

tional current. Multiplying both sides of (2) with Rb
m

finally gives the velocity relationship

vb
mb = Rb

mvm
mw + vb

wb. (3)

Analogous to the linear velocities, their angular coun-
terparts are given as ωm

mb and ωb
mb := Rb

mωm
mb.

For navigation purposes, two additional reference
frames are common. The Earth-centered Earth-fixed
(ECEF) coordinate frame is denoted {e}. The frame
{l} denotes a wander azimuth frame, defined such that
it has zero angular velocity relative to the Earth about
its z-axis. The initial orientation is NED and its origin
is directly above the vehicle at the surface of the Earth
ellipsoid. Note that {m} is fixed relative to {e}, and
that Rb

l ≈ Rb
m for operations in limited geographical

areas, far from the poles. In light of the new frames,
(3) may be restated as

vb
eb = Rb

l v
l
ew + vb

wb. (4)

The correspondence between the variables above and
the SNAME (1950) notation is shown in Table 1.
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Table 1: Nomenclature
Description Variable Entries*

Local vehicle position pm
mb (x, y, z)

Earth-relative linear velocity vb
mb = vb

eb (u, v, w)

Water-relative linear velocity vb
wb (ur, vr, wr)

Current velocity vl
mw = vl

ew (ul
c, v

l
c, w

l
c)

Vehicle angular velocity ωb
mb = ωb

eb (p, q, r)

External forces on vehicle fb (X,Y, Z)

External moments on vehicle mb (K,M,N)

Attitude (roll, pitch, yaw) Θ (φ, θ, ψ)

* Based on SNAME notation.

2.2 Kinetic Vehicle Model

As shown in Fossen (2002) a general expression of the
rigid body equations of motion can be written as

MRBν̇ + CRB(ν)ν = τRB , (5)

where MRB is the rigid body inertia matrix, CRB is the
corresponding matrix of Coriolis and centripetal terms,
and τRB is a generalized force vector of external forces
and moments. For 3 DOF motion in the horizontal
plane (surge, sway, and yaw), the generalized force and
velocity vectors are τRB = [X, Y,N ]> and ν = [u, v, r]>.

The difficulty in modeling an underwater vehicle
arises when expressing the right hand-side of (5). One
possibility is to linearly decompose τRB as

τRB = τS + τH + τ , (6)

where the generalized hydrostatic force τS is known in
its exact form. The generalized hydrodynamic force
τH arises from the reaction between the surrounding
fluid and the submerged vehicle in motion. The last
generalized force component τ consists of forces and
moments from propulsion and control surfaces.

The HUGIN 4500 autonomous underwater vehicle
(AUV) is used as a case study in this paper. Its bare
hull is a body of revolution, and it has a cruciform
tail fin configuration that is top-bottom, port-starboard
symmetric. A 3 DOF kinetic model for this vehicle can,
after adding up the contributions in (6), be written as

MRBν̇ + CRB(ν)ν = τ −MAν̇r −CA(νr)νr−
d(νr)νr − l(νr)− g(Θ). (7)

A description and complete expressions for the vari-
ous terms are given in Hegrenæs et al. (2007a). Note
the difference between ν and νr = [ur, vr, r]>, denot-
ing generalized Earth-relative (inertial) and generalized
water-relative velocity, respectively.

For (7) one must decide upon using either ν or νr

as the velocity state. As discussed in Hegrenæs et al.

(2007a), a reasonable assumption at low vehicle angular
rates or small current amplitudes is that ν̇ ≈ ν̇r. This
yields the final model

Mν̇r = τ − c(ν,νr)− d(νr)νr − l(νr)− g(Θ), (8)

where for simplicity we used

M := MRB + MA

c(ν,νr) := CRB(ν)ν + CA(νr)νr.

As seen from (8), the term c(ν,νr) depends on both ν
and νr. If there is no current then ν = νr. Also, only
the translational part of ν and νr differ since the current
is irrotational by assumption. The inertial velocity can
be calculated from (4), once the current velocity and
the water-relative velocity are known. This implies that
the current must be measured or estimated. In the
integrated navigation system studied in this paper, the
current is included as a state in the Kalman filter (KF).

The equation in (8) can be solved using a standard
numerical integration routine in order to recover the
state. That is, model-based measurements of the water-
relative velocity in surge and sway, as well as the yaw
rate, can be attained from control inputs, attitude and
current. Both control inputs and the vehicle attitude
are usually measured. Also note that (8) was derived
assuming negligible coupling from heave, and roll and
pitch rate. This is a reasonable assumption for normal
operations with the HUGIN 4500 AUV.

The model in (8) is a typical grey-box model where
the vehicle behavior is described by a set of nonlinear
differential equations with unknown parameters. For
the model considered herein, the parameters were found
from semi-empirical relationships, open-water test, and
from navigation data collected by the HUGIN 4500.
More information on the steps involved for identifying
the parameters is found in Hegrenæs (2006); Hegrenæs
et al. (2007a,b).

3 Model-Aided Underwater
Navigation

Navigation systems built upon inertial principles, time
of flight acoustics, velocity logs, and global positioning
systems are all common. As pointed out in Kinsey
et al. (2006), none of these techniques are perfect how-
ever, and in practice a combination of them is usually
employed. This section reports the concept and develop-
ment of an integrated model-aided INS for underwater
navigation.

3.1 Traditional INS

The key components of any INS consist of an inertial
measurement unit (IMU) and a set of equations imple-
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Figure 1: High-level outline if traditional aided INS.

mented in software. The navigation equations take the
gyro and accelerometer measurements from the IMU
as inputs and integrate them to velocity, position and
orientation. The general solution of the navigation equa-
tions does not require any information on the dynamics
of the vehicle in which the IMU is installed.

Since an INS is a diverging system, it requires an aid-
ing system to limit the growth of its errors. Classically,
aiding is accomplished using external measurements,
e.g. position from acoustics and velocity from a DVL.
A coarse schematic diagram of a traditional aided INS
is shown in Figure 1, where the input to the KF is the
difference between the aiding sensor output and that
of the INS. The KF output includes estimates of the
accumulated errors in the navigation equations, which
are used for resetting the INS and for obtaining the
best possible estimate of the true vehicle state (position,
velocity and orientation). Besides modeling the INS
errors, additional states may also be included in the
KF, for instance colored noise in the aiding sensors.

3.2 Model-Aided INS

As mentioned above, a necessity to restrain the INS drift
is the integration of external aiding sensors. Standard
components such as compass and pressure sensor are
almost always included, where the latter effectively
binds the vertical geographical drift, i.e. drift along
the z-axis of {m}, or more precisely {l} (recall Section
2). For navigation in the geographical horizontal plane
the situation is more complicated, and to date, the
main aiding methods involve time of flight acoustic
positioning and Doppler sonar velocity measurements.

A DVL may or may not be part of the sensor suite,
and even when it is, situations will occur where it fails to
work or measurements are discarded due to decreased
quality. In either case, in the absence of DVL mea-
surements, alternative velocity information is required
to achieve an acceptable low drift navigation solution
between position updates. As for the acoustics, mea-
surements may be available often or only sporadically.

INS KF

Aiding
sensors

Vehicle
model

ž δz
−

z

δ̂x

x̂

Reset

Reset
x̌

Figure 2: High-level outline of model-aided INS.

Both measurements are crucial for the INS performance.
As is experimentally validated in Section 5, the output
from an INS with neither position nor velocity measure-
ments in place, rapidly becomes useless. This leads back
to the question addressed in this paper – can the output
from a kinetic vehicle model improve the accuracy and
robustness of an INS?

The basic idea and concept of using a vehicle model
for aiding an INS is illustrated in Figure 2, where the
output from the kinetic model is treated analogously
to that of an external aiding sensor. The model-aided
INS clearly resembles the traditional INS in Figure 1,
and both systems may share many of the same aiding
sensors. As implemented herein, the DVL unit in the
traditional INS is merely replaced by the vehicle model,
after doing necessary modifications in the KF. A model-
aided INS utilizing both external velocity measurements
and model output is subject to ongoing research. Note
that the integration of a vehicle model in the navigation
system does not require any additional instrumentation.
A more detailed outline of the navigation systems is
shown in Figure 3, differing only in the velocity aiding.
This is illustrated with a switch. The traditional INS
with DVL serves as the basis when later evaluating the
traditional and model-aided INS in Section 5.

3.3 Measurement and Process Equation

A DVL measures the vehicle velocity relative to the
bottom, hence it is unaffected by the current. In con-
trast, the translational velocity calculated by the vehicle
model is relative to the water. Consequently, in order to
better make use of this velocity estimate for navigation
purposes, the current must be accounted for.

In accordance to Figure 2 and conventional KF nota-
tion, the general input to the KF is given as

δzk = zk − žk, (9)

where the accent (̌·) denotes a calculated variable, in
this case from the INS. For the velocity we then get

δzvel = zvel − žvel, (10)
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Figure 3: Block diagram of model-aided (and tradi-
tional) INS. Additional velocity measure-
ments are not included in this paper when
utilizing the output from the vehicle model,
and the other way around when using veloc-
ity measurements. This is illustrated with a
switch/selector. The position measurements
may be available often or only sporadically.

where the discrete time index k is dropped for simplicity.
As is standard for INS, the calculated velocity is žvel =
v̌l

eb, which ideally implies that zvel = ṽl
eb, where the

accent (̃·) denotes a measured quantity. In case of using
the output from the vehicle model this is not the case,
and the best we can to is to let

zvel := Řl
bv̌

b
wb + v̌l

ew, (11)

which after substitution in (10) yields the expression

δz = Řl
bv̌

b
wb + v̌l

ew − v̌l
eb. (12)

The variables v̌l
eb and Řl

b stem from the INS, v̌b
wb is

given by the vehicle model, and v̌l
ew can, for instance,

be calculated from empirical tide or current tables. If
the current was measured it could be used in place of
v̌l

ew. In this paper we assume that v̌l
ew = 0, which

is to say that our best a priori guess of the current is
zero. It does not mean that the true current is zero.
Since the model does not include the water-relative
velocity in heave as a state, this model output will be
assumed to be zero. The inclusion of a depth sensor in
the navigation system is presumed to compensate for
this simplification.

A true variable is given as the sum of its calculated
value and a corresponding error (similarly for a mea-
sured quantity), that is,

(·) = (̌·) + δ(·) or (·) = (̃·) + δ(·). (13)

Replacing the current velocity and the vehicle model
velocity in (12) with their errors and true values yields

δz = Řl
b(v

b
wb − δvb

wb) + (vl
ew − δvl

ew)− v̌l
eb, (14)

which after some manipulation and first order approxi-
mations leads to the final expression of the measurement
equation associated with the vehicle model

δzvel = δvl
eb − S(v̌l

eb)e
l
lb − Řl

bδvb
wb − δvl

ew, (15)

where the variable el
lb is a measure of the calculation

error in Řl
b (Gade, 1997). The variables in (15) are all

calculated by the INS or included in the KF process
equation. In this work, we assume that the vehicle
model output error δvb

wb can be modeled as white noise.
A more advanced error description is to be implemented
in further work. As for the current δvl

ew, it is modeled
as the sum of colored noise and white noise. The colored
noise is implemented as a 1. order Markov process driven
by white noise Gelb (1974). The vector entries of δvb

wb

are assumed uncorrelated. Similarly for δvl
ew. Finally

note that the KF estimate of δvl
ew is also an estimate

of the true current, since v̌l
ew = 0 by assumption, and

consequently, vl
ew = δvl

ew.

4 Experimental Setup

Navigation data collected by the field-deployed HUGIN
4500 AUV are used for evaluating the performance of
the model-aided INS proposed in Section 3. An overview
of vehicle particulars is given subsequently, followed by
a description of the conducted experiments.

4.1 Vehicle Specifications

The Kongsberg Maritime HUGIN 4500 is the latest
member of the HUGIN AUV family. Figure 4 shows a
picture from one of the sea-trials in September 2006.

The length of the vehicle is approximately 6.5 m and
the maximum diameter is 1 m. This gives a nominal
dry mass of 1950 kg. Designed for large depths and
long endurance, the vehicle can operate for 60-70 hours
at depths down to 4500 meters. The cruising speed of
the vehicle is about 3.7 knots or 1.9 m/s. The vehicle is
passively stable in roll and close to neutrally buoyant.

For propulsion, the vehicle is fitted with a single
three-bladed propeller. A cruciform tail configuration
with four identical control surfaces is used for maneuver-
ing. The vehicle can operate in either UUV (unmanned
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Figure 4: The HUGIN 4500 AUV during sea-trial.

underwater vehicle) or AUV mode. In AUV mode the
vehicle maneuvers without supervision, and indepen-
dently of the mother ship. In UUV mode the vehicle
operates near the mother ship, hence enabling real-time
supervision. The data used in this paper were collected
while operating in UUV mode.

HUGIN 4500 is equipped with a traditional aided
INS. Some IMU specifications are listed in Table 2. In
UUV mode the surface ship tracks the submersible with
an ultra short baseline acoustic position system (USBL).
By combining DGPS with USBL, a global position esti-
mate can be obtained, which is then transmitted to the
AUV. Additional navigation sensors include compass,
pressure sensor, and Doppler velocity log (DVL). Pri-
mary aiding sensors and some of their specifications are
listed in Table 3. A schematic outline of the integrated
navigation system is shown in Figure 3. Readers are
referred to Gade (2004); Jalving et al. (2003a,b) for
additional information on the navigation system and
navigation system accuracy.

4.2 Experimental Description

During September and October 2006, several sea-trials
were conducted with the HUGIN 4500 in the vicinity of
59◦ 29’ N, 10◦ 28’ E, in the Oslo-fjord, Norway. More
than 60 hours of data were collected, of which roughly
3 hours are utilized in this paper. The test area and
the horizontal vehicle trajectory are shown in Figure
5. The vehicle followed a standard lawn-mover pattern,
typical for a survey AUV like the HUGIN 4500. Dur-
ing the entire run the vehicle was kept at a close to
constant depth at 140 meters. Note that no parts of
the experimental data used herein were used during the
development process of the vehicle model.

4.3 Data Post-Processing

The raw data collected by the HUGIN 4500 were post-
processed before being utilized in this paper. The first
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Figure 5: Test area and outlier-filtered HUGIN position
measurements, logged topside at 1/3 Hz. The
square shows the start position.

steps involved wild-point filtering of the position mea-
surements. The HUGIN navigation system then re-
processed the data to get real-time estimates from the
KF (this is done using a true copy of the at-sea nav-
igation system). The data were finally smoothed to
enhance accuracy. All these steps were done using
NavLab (Gade, 2004) and without generating any ar-
tificial data. The accuracy of the smoothed vehicle
position was estimated to be 0.75 meters (1σ) north
and east. The experimentally proven accuracy of the
navigation system is thoroughly discussed in Section
5.2.2 of Gade (2004). The smoothed data collected
with the vehicle configuration described in Section 4.1
serve as the basis for evaluating the performance of the
traditional and model-aided INS. NavLab is also used
during the evaluation process in Section 5.

5 Experimental Evaluation

This section evaluates the performance of the model-
aided INS discussed in Section 3. The performance is
compared to the traditional aided INS. With exception
of the tuning parameters associated with the vehicle
model, all the KF parameters are identical. Depth sen-
sor and compass are always included as aiding sensors.
The compass is however given a large covariance and is
consequently weighted insignificantly in the KF. The
position measurements are available either as logged
topside at about 1/3 Hz, or as received onboard the
AUV at about 1/30 Hz. External velocity measure-
ments are absent. The position error is taken as the
difference between the local position in the basis data

118



Hegrenæs et al., “Towards Model-Aided Navigation of Underwater Vehicles”

Table 2: IMU specifications
Model Gyro Technology Gyro Bias Accelerometer Bias

IXSEA IMU90 Fiber optic ±0.05◦/h ±500 µg

Table 3: Primary navigation aiding sensors
Variable Sensor Precision Rate

Position Kongsberg HiPAP Range, Angle: < 20 cm, 0.12◦ Varying*
Velocity RDI WHN 300 ±0.4%± 0.2 cm/s 1Hz
Pressure Paroscientific 0.01 % full scale 1Hz

* Approximately 1/3 Hz. In real-time position updates are received at about
1/30 Hz, from the surface vessel via an acoustic link.

and the local position estimated by the navigation sys-
tem under consideration. The navigation systems are
evaluated according to the following two cases:

5.0.1 Topside position fix with dropout

The scenario is best illustrated in Figure 6(a), where the
vehicle starts at the same initial position as the basis
data. The real-time KF receives position measurements
at topside rate for about 83 minutes. The position aid-
ing is then disabled for 30 minutes, before again being
enabled for the remaining of the survey. This experi-
ment was done in order to evaluate the performance
of the two systems in the case position measurements
become unavailable.

5.0.2 Onboard position fix

Similar scenario as before, but with position measure-
ments being available at onboard (AUV-side) rate, and
with no extraordinary dropouts. The position fix up-
date rates for the entire run are shown in Figure 7(a).
This experiment was done in order to evaluate the per-
formance of the two navigation systems in the case
were position measurements are available at a reduced
frequency.

5.1 Navigation Performance - Case 1

During the first and last part of the survey, the model-
aided INS and the traditional INS are found to perform
comparably in terms of calculated position errors. The
position uncertainties estimated by the model-aided
INS are slightly lower however, and less jagged. For
the part without position aiding, the traditional INS
breaks down quickly, as can be seen in Figure 6(b) where
the maximum Euclidian norm of the position error is
close to 700 meters. The model-aided INS continues
to perform excellent, and the maximum norm of the
position error is 6 meters. From Figure 6(d) this can
be seen to be well within the estimated one standard
deviation (1σ). The median of the estimated north

and east position uncertainties are 1.2 meters. The
estimated trajectory is shown in Figure 6(c), closely
following the basis data. Overall the model-aided INS
performs excellent, and superior to the traditional INS.
Note that the navigation accuracy obtained during time
slots without position aiding is limited to the accuracy of
the KF estimated current. If the current does not vary
significantly throughout the time period where position
measurements are absent, the navigation accuracy will
remain good.

5.2 Navigation Performance - Case 2

As can be seen in Figure 7(b), the two navigation sys-
tems provide very different estimates of the position
uncertainties. A similar behavior was also observed
when using position measurements at topside rate. The
position uncertainties estimated by the model-aided
INS are clearly lower, and they appear more reliable.
The estimates are also much smoother. The beneficial
effect of including the vehicle model for aiding the INS is
apparent in Figure 7(c), where the tallest spikes for the
traditional INS correspond to approximately 60 seconds
since receiving the preceding position measurement.

In terms of position errors the model-aided INS again
performs excellent, and well within one standard devia-
tion (1σ) as seen in Figure 7(d). The traditional INS
also performs acceptable in terms of position errors,
and comparable to the model-aided INS when the po-
sition measurements appear frequently. As mentioned
earlier, the drift without external position or velocity
aiding is not linear, and the performance of the tradi-
tional INS worsens when the position update frequency
changes from 1/30 Hz to 1/60 Hz. We conclude that the
model-aided INS performs better than the traditional
INS during time periods without position aiding, and it
provides better error covariance estimates throughout.
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Figure 6: Traditional and model-aided INS evaluated according to case 1: (a) The red (solid) trajectory serves as
basis for evaluating the navigation systems. The red square shows the initial position used in the KF.
The blue (o) data show wild-point filtered position measurements logged topside. The segment without
position measurements corresponds to 30 minutes. (b) Real-time navigation solution obtained with
traditional INS shown in green (dashed). Other data as before. The system shows poor performance
without position measurements. (c) Real-time navigation solution obtained with model-aided INS
shown in green (dashed). Other data as before. The system shows excellent performance, also without
position measurements. The circles (red) indicate 75 and 125 minutes into the run. (d) The true
position errors (assuming basis is correct) for the model-aided INS in north and east are shown in
blue (solid). The corresponding estimated real-time KF position uncertainties (1σ) are shown in green
(dashed).
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Figure 7: Traditional and model-aided INS evaluated according to case 2: (a) The blue (solid) line shows the
time between position measurements, as received by the AUV. The basis trajectory is the same as in
Figure 6(a). The circles indicate 54 and 72 minutes into the run. (b) The estimated real-time position
uncertainties (1σ) for the model-aided INS are shown in green (dashed). The estimated real-time
position uncertainties (1σ) for the traditional INS are shown in blue (solid). (c) Magnified version
of Figure 7(b). The model-aided INS provides smoother estimates than the traditional INS. (d) The
estimated real-time position uncertainties (1σ) for the model-aided INS are shown in green (dashed).
The true position errors (assuming basis is correct) for the model-aided INS in north and east shown
in blue (solid).

121



Hegrenæs et al., “Towards Model-Aided Navigation of Underwater Vehicles”

6 Conclusions and Further Work

This paper reports the development of a model-aided
INS for underwater vehicle navigation. The navigation
system is novel in that accurate knowledge of the vehicle
dynamics is utilized for aiding the INS, and the naviga-
tion performance is experimentally evaluated using real
AUV data. It is found that the error in the model-aided
INS position estimate is significantly lower than that
of the traditional INS throughout time segments where
position and velocity measurements are absent. The
model-aided INS also performs equally good or better
than the traditional INS in cases with regular position
updates, and the difference in performance increases
with decreasing position update rate. The experimental
results demonstrate that with merely an addition of
software and no added instrumentation, it is possible to
considerably improve the accuracy and robustness of an
INS by utilizing the output from a kinetic vehicle model.
To the best of our knowledge, the presented results are
the first report on the implementation and experimental
evaluation of model-aided INS for underwater vehicle
navigation. The conclusion has an important practical
consequence, and the proposed approach shows promise
to improve underwater navigation capabilities both for
systems lacking disparate velocity measurements, and
for systems where the need for redundancy and integrity
is important.

6.1 Further Work

A more advanced error description of the vehicle model
output may be implemented, and observability condi-
tions for the vehicle model error and the sea current
should be investigated. A model-aided INS utilizing
both external velocity measurements and vehicle model
output is of great practical interest, and should be
implemented. This is subject to ongoing research.
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