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Abstract

Parametric roll is a critical phenomenon for ships, whose onset may cause roll oscillations up to ±40◦,
leading to very dangerous situations and possibly capsizing. Container ships have been shown to be
particularly prone to parametric roll resonance when they are sailing in moderate to heavy head seas.

A Matlab/Simulinkr parametric roll benchmark model for a large container ship has been implemented
and validated against a wide set of experimental data. The model is a part of a Matlab/Simulink Toolbox
(MSS, 2007). The benchmark implements a 3rd-order nonlinear model where the dynamics of roll is
strongly coupled with the heave and pitch dynamics. The implemented model has shown good accuracy
in predicting the container ship motions, both in the vertical plane and in the transversal one. Parametric
roll has been reproduced for all the data sets in which it happened, and the model provides realistic results
which are in good agreement with the model tank experiments.
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1 Introduction

Parametric roll is an autoparametric resonance phe-
nomenon whose onset causes a sudden rise in roll os-
cillations. The resulting heavy roll motion, which can
reach 30-40 degrees of roll angle, may bring the vessel
into conditions dangerous for the ship, the cargo, and
the crew. The origin of this unstable motion is the
time-varying geometry of the submerged hull, which
produces periodic variations of the transverse stability
properties of the ship.
Parametric roll is known to occur when a ship sails

in moderate to heavy longitudinal or oblique seas; the
wave passage along the hull and the wave excited ver-
tical motions result in variations of the intercepted wa-
terplane area, and in turn, in relevant changes in the
restoring characteristics. The onset and build-up of
parametric roll is due to the occurrence of concomi-
tant conditions: the wave length is close to the ship
length (λw ≈ LPP), the ship approaches waves with
encounter frequency almost twice the roll natural fre-
quency (ωe ≈ 2ω0), and the wave height is greater than
a ship-dependent threshold (hw > hs).
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The risk of parametric roll has been known to the
maritime community since the early fifties, but only
for small vessels with marginal stability – e.g. fishing
boats – sailing in following seas. However, the phe-
nomenon has recently attracted significant interest by
the scientific community after accidents occurred with
container ships sailing in head seas, incidents that in-
volved significant damage to cargo as well as structural
damages for millions of dollars (France et al., 2001;
Carmel, 2006).
Several different types of vessel have reported to ex-

perience parametric roll in head seas, e.g. destroyers
(Francescutto, 2001), ro-ro paxes (Francescutto and
Bulian, 2002) and PCTC (Palmquist and Nygren, 2004).
Container carriers, however, are the most prone to
parametric roll because of the current particular hull
shape, i.e. large bow flare and stern overhang, and
hence abrupt variation in the intercepted water-plane
area when a wave crest or trough is amidships.
This has called for deep investigations into the na-

ture of parametric roll in head/near head seas, and
for the development of mathematical models able to
capture and reproduce the physical aspects driving the
resonant motion. In the last six years mathematical
models of different complexity have been proposed by
the scientific community, most of them relying on the
Mathieu Equation to describe the dynamics of the ship
subject to parametric resonance.
One-DOF models considering the uncoupled roll mo-

tion have been widely used to analyze the critical pa-
rameters of the phenomenon and derive stability condi-
tions. Examples can be found in the papers by France
et al. (2001) and Shin et al. (2004) where the authors
employed the 1-DOF roll equation to show that, in
regular waves, the Mathieu Equation can explain the
onset of heavy roll motion in head seas.
Bulian (2006) proposed a 1.5-DOF model where the

dynamic interaction between the vertical motions and
the roll oscillation was relaxed by the assumption of
quasi-static heave and pitch. Moreover, that assump-
tion allowed an analytical description of the GZ curve
that was approximated as a surface varying with roll
angle and wave crest position. This model is consid-
ered valid for moderate ship speed in head seas, and
has lead to reasonable results in predicting parametric
roll.
A 3-DOF nonlinear fully coupled model was first de-

veloped by Neves (2002). A first attempt was done
by using Taylor series expansion up to 2nd-order to
describe the coupled restoring forces and moments in
heave, pitch and roll. This model, although it provided
a quite thorough description of the nonlinear interac-
tions among the different modes, tended to overesti-
mate the roll oscillation above the stability threshold.

Neves and Rodríguez (2005) proposed a 3rd-order an-
alytical model where the couplings among the three
modes are expressed as a 3rd-order Taylor series ex-
pansion. In this new model the nonlinear coefficients
are mathematically derived as a functions of the char-
acteristics of the hull shape. This 3-DOF model has
been applied for the prediction of parametric roll to
a transom stern fishing vessel (Neves and Rodríguez,
2006a,b) providing outcomes which better match the
experimental results than the 2nd-order model.
It is noted that the above-mentioned literature have

attempted to model parametric roll from an analytical
points of view. Jensen (2007) takes a statistical ap-
proach instead, motivated by the difficulties inherent
in describing the interaction between a 3-dimensional
wave pattern and the motion of a ship hull. He shows
how the statistical distribution of nonlinear ship re-
sponses can be estimated very accurately using a first-
order reliability method. A commercial implementa-
tion in a system to predict parametric roll (SeaSenser)
was reported in Nielsen et al. (2006).
The direction of this paper is the analytical one, aim-

ing at providing simulation tools that could e.g. be
used in studies of active stabilization and control. The
model proposed by Neves and Rodríguez (2005) is ap-
plied to describe the dynamics of a container vessel
subject to parametric roll resonance conditions. The
model parameters are identified based upon the ship
line drawings and the loading conditions. A Matlab/
Simulink implementation of the above model is then
presented. The reliability of the implemented model in
simulating parametric resonance behavior is validated
against experimental data. The validation has shown
good agreement with the experimental results for roll
both in the experiments where parametric roll reso-
nance occurred, and in the experiments where it did
not occur.
The main goal of this work is to provide a bench-

mark for simulating parametric roll of a container ship
over a large range of ship speeds and sea states. This
benchmark has been designed to be a fully integrated
part of Matlab/Simulink Toolbox for marine systems
(MSS, 2007). The availability of such a powerful tool
opens up a great wealth of opportunities, notably the
design and testing of novel model-based roll motion
stabilizers.

2 Mathematical Model for
Parametric Roll

The proposal and the adoption of an analytical model
for representing a specific phenomenon should be driven
by a trade-off between complexity and agreement with
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physical laws governing that phenomenon and/or ex-
perimental results.
Tondl et al. (2000) define an autoparametric system

as follows:

Definition 1 Autoparametric systems are vibrating sys-
tems that consist of at least two constituting subsys-
tems. One is the primary system that will usually be
in a vibrating state. This primary system can be ex-
ternally forced, self-excited, parametrically excited, or
a combination of these. The second constituting sub-
system is called the secondary system. The secondary
system is coupled to the primary system in a nonlinear
way, but such that the secondary system can be at rest
while the primary system is vibrating.

An autoparametric system is, hence, characterized
by these main aspects:

1. two nonlinearly coupled subsystems;

2. a normal mode where the primary system is in
a vibrating state and the secondary system is at
rest;

3. the presence of instability regions where the nor-
mal mode becomes unstable;

4. in the region of instability of the normal mode the
overall system is in autoparametric resonance:
the secondary system is parametrically excited
by the vibrations of the primary system and it
will not be at rest anymore.

Considering Definition 1, 1 DOF models have too lit-
tle complexity to describe an autoparametric system,
since the roll motion for a ship sailing in longitudinal
seas represents only the secondary system. They are
useful to obtain insight in the parametric roll resonance
phenomenon, but they will have difficulty predicting
the real amplitude of the oscillations about the trans-
verse plane.
The model proposed by Neves and Rodríguez (2005)

is complex enough to capture the dynamics of a con-
tainer vessel behaving as an autoparametric system;
it includes both the primary system (heave and pitch
dynamics) which is externally excited by the wave mo-
tion, and the secondary system (roll dynamics) which
is parametrically excited by the primary.

2.1 Equations of Motion
The 3-DOF nonlinear mathematical model of the con-
tainer vessel is presented in the following way (using
the notation of Neves and Rodríguez (2005)):
Let

s(t) =
[
z(t) φ(t) θ(t)

]T (1)

be the generalized coordinate vector, where z is the
heave displacement, φ is the roll angle, and θ is the
pitch angle, as shown in Figure 1.

Figure 1: Definition of motions

Then the nonlinear equations of motion can be ex-
pressed in matrix form as

(M + A)s̈ + B(φ̇)ṡ + cres(s, ζ) = cext(ζ, ζ̇, ζ̈) (2)

where

• M ∈ R3×3 is the diagonal rigid-body generalized
mass matrix;

• A ∈ R3×3 is the generalized added mass matrix;

• B ∈ R3×3 is the hydrodynamic damping (nonlin-
ear in roll);

• cres ∈ R3 is the nonlinear vector of restoring
forces and moments expressed as functions of the
relative motion between ship hull and wave ele-
vation ζ(t);

• cext ∈ R3 is the vector of the external wave ex-
citation forces and moments which depends on
wave heading, encounter frequency, wave ampli-
tude and time.

2.1.1 Generalized Mass, Added Mass and Damping

The generalized mass matrix can be written as

M =

 m 0 0
0 Ix 0
0 0 Iy

 (3)

where m is the ship mass, Ix is inertia in roll and Iy is
inertia in pitch.
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The hydrodynamic added mass and damping matri-
ces are expressed as

A =

 −Zz̈ 0 −Zθ̈
0 −Kφ̈ 0
−Mz̈ 0 −Mθ̈

 (4)

B(φ̇) =

 −Zż 0 −Zθ̇
0 −Kφ̇(φ̇) 0
−Mż 0 −Mθ̇

 (5)

where all entries except Kφ̇(φ̇) can be evaluated by
means of potential theory (Salvesen et al., 1970).
The hydrodynamic damping in roll may be expressed

as

Kφ̇(φ̇)φ̇ = Kφ̇φ̇+Kφ̇|φ̇|φ̇|φ̇| (6)

where the linear term represents the potential and lin-
ear skin friction, whereas the nonlinear term takes into
account viscous effects. The coefficients Kφ̇ and Kφ̇|φ̇|
can be calculated by the formulae given in Himeno
(1981). The roll damping characteristics may also be
derived from data of roll decaying tests at appropriate
forward speeds of the vessel.

2.1.2 Waves

In regular seas, the incident wave elevation according
to the Airy linear theory, see Newman (1977), is defined
as

ζ(x, y, t;χ) = Aw cos(kx cosχ− ky sinχ− ωet) (7)

where Aw is the wave amplitude, k is the wave num-
ber, χ is the wave heading, and ωe is the encounter
wave frequency. For head seas (χ = 180◦), the wave
elevation reads as

ζ(x, t) = Aw cos(kx+ ωet). (8)

2.1.3 Nonlinear Restoring Forces and Moments

The nonlinear restoring actions are given by the com-
bination of the effects of the vessel motion in calm wa-
ter and the effect of the wave elevation along the hull.
Therefore, the vector of restoring forces and moments
can be written, up to 3rd-order terms, as

cpos ≈ cpos,s + cpos,ζ

+ cpos,s2 + cpos,sζ + cpos,ζ2

+ cpos,s3 + cpos,s2ζ + cpos,sζ2 + cpos,ζ3

(9)

where cpos,siζj = ∂i+jcpos
∂si∂ζj siζj .

The 1st, 2nd and 3rd-order components in (9), which
are independent of the displacement vector s, must be

included in the external forces and moments acting on
the vessel. These terms describe the linear and nonlin-
ear Froude-Krylov forces/moments.
The 2nd and 3rd-order nonlinear effects due to hull-

wave interactions must, instead, be included in the
restoring vector cres because of their affinity, from the
mathematical point of view, with the hydrostatic ac-
tions. Then the restoring force and moments due to
body motion are given by

cres(s, ζ) = cpos(s, ζ)− cext,FK(ζ) (10)

where cext,FK(ζ) = cpos,ζ + cpos,ζ2 + cpos,ζ3 .
Therefore the restoring force/moments in each de-

gree of freedom are given by the following terms:

• 1st-order body motions (cpos,s)

Z
(1)
b = Zzz + Zφφ+ Zθθ

K
(1)
b = Kzz +Kφφ+Kθθ (11)

M
(1)
b = Mzz +Mφφ+Mθθ

• 2nd-order body motions (cpos,s2)

Z
(2)
b =

1
2

(Zzzz2 + 2Zzφzφ+ 2Zzθzθ

+ 2Zφθφθ + Zφφφ
2 + Zθθθ

2)

K
(2)
b =

1
2

(Kzzz
2 + 2Kzφzφ+ 2Kzθzθ (12)

+ 2Kφθφθ +Kφφφ
2 +Kθθθ

2)

M
(2)
b =

1
2

(Mzzz
2 + 2Mzφzφ+ 2Mzθzθ

+ 2Mφθφθ +Mφφφ
2 +Mθθθ

2)

• 2nd-order hull-wave interactions (cpos,sζ)

Z
(2)
h/w = Zζz(t)z + Zζφ(t)φ+ Zζθ(t)θ

K
(2)
h/w = Kζz(t)z +Kζφ(t)φ+Kζθ(t)θ (13)

M
(2)
h/w = Mζz(t)z +Mζφ(t)φ+Mζθ(t)θ

• 3rd-order body motions (cpos,s3)

Z
(3)
b =

1
6
(
Zzzzz

3 + Zφφφφ
3 + Zθθθθ

3

+ 3Zzzφz2φ+ 3Zzzθz2θ + 3Zφφzφ2z

+ 3Zφφθφ2θ + 3Zθθzθ2z

+ 3Zθθφθ2φ+ 6Zzφθzφθ
)

K
(3)
b =

1
6
(
Kzzzz

3 +Kφφφφ
3 +Kθθθθ

3

+ 3Kzzφz
2φ+ 3Kzzθz

2θ + 3Kφφzφ
2z

+ 3Kφφθφ
2θ + 3Kθθzθ

2z (14)

+ 3Kθθφθ
2φ+ 6Kzφθzφθ

)
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M
(3)
b =

1
6
(
Mzzzz

3 +Mφφφφ
3 +Mθθθθ

3

+ 3Mzzφz
2φ+ 3Mzzθz

2θ + 3Mφφzφ
2z

+ 3Mφφθφ
2θ + 3Mθθzθ

2z

+ 3Mθθφθ
2φ+ 6Mzφθzφθ

)
• 3rd-order hull-wave interactions (cpos,s2ζ

+cpos,sζ2)

Z
(3)
h/w = Zζzz(t)z2 + Zζφφ(t)φ2 + Zζθθ(t)θ2

+ Zζzφ(t)zφ+ Zζzθ(t)zθ
+ Zζφθ(t)φθ + Zζζz(t)z
+ Zζζφ(t)φ+ Zζζθ(t)θ

K
(3)
h/w = Kζzz(t)z2 +Kζφφ(t)φ2 +Kζθθ(t)θ2

+Kζzφ(t)zφ+Kζzθ(t)zθ
+Kζφθ(t)φθ +Kζζz(t)z (15)
+Kζζφ(t)φ+Kζζθ(t)θ

M
(3)
h/w = Mζzz(t)z2 +Mζφφ(t)φ2 +Mζθθ(t)θ2

+Mζzφ(t)zφ+Mζzθ(t)zθ
+Mζφθ(t)φθ +Mζζz(t)z
+Mζζφ(t)φ+Mζζθ(t)θ

The time varying terms depend explicitly on the
wave elevation ζ(t) and thus implicitly on the time t.
Looking at the 1st, 2nd and 3rd-order coefficients, a

strong cross-coupling between all three degrees of free-
dom becomes evident.

2.1.4 External Forcing

The interaction between ship motion and wave pas-
sage is modeled as a variation of the geometry of the
submerged hull defined by the instantaneous wave po-
sition. The external forcing vector cext(ζ, ζ̇, ζ̈) includes
only contributions independent of ship motions, such
that

cext(ζ, ζ̇, ζ̈) = τ 1w + τ 2w. (16)

τ 1w represents the 1st-order wave excitation forces
generated by the wave motion. These forces are char-
acterized by two contributions: the first one is due
to Froude-Krylov forces, which are caused by incident
waves considering the hull restrained from moving and
that the presence of the hull does not influence the
wave field. The second contribution gives the diffrac-
tion forces, which provide the corrections necessary for
the variation of the flow field produced by the hull.

τ 2w are the 2nd-order wave excitation forces which
include three important components. The first contri-
bution is given by the mean wave drift forces caused by

nonlinear wave potential effects; the second one is due
to low-frequency wave drift forces caused by nonlinear
elements in the wave loads; and the third component
is given by high-frequency wave drift forces.
In the present analysis the external force and mo-

ments are defined as being proportional to the first
order wave motion, whereas higher order terms are ne-
glected. Therefore the external force/moments vector
cext reads as

cext(ζ, ζ̇, ζ̈) ≈ τ 1w = cext,FK + cext,Dif . (17)

The wave excitation forces are defined by the wave-
force response amplitude operator (force RAO) for each
degree of freedom. The Force RAO is computed (Perez,
2005) as

Fi(ωe, χ) =
∣∣∣∣ τ̃1wi(ωe, χ)

ζ̃

∣∣∣∣ ej arg[τ̃1wi(ωe,χ)] (18)

where τ̃1wi is the complex 1st-order wave excitation
forces, and ζ̃ is the complex wave elevation. Since the
model only considers head seas, (18) simplifies to

F̄i(ωe) =
∣∣∣∣ τ̄1wi(ωe)

ζ̃

∣∣∣∣ ej arg[τ̄1wi(ωe)]. (19)

With these force RAOs, it is possible to obtain the
wave excitation loads in each degree of freedom as

τ1wi(t) = |F̄i(ωe)|Aw cos(ωet+ αi) (20)

for i = 3, 4, 5, where αi = arg[F̄i(ωe)]. For example,
the external force acting on heave is given by

Zext(t) = |F̄3(ωe)|Aw cos(ωet+ α3). (21)

3 Identification of Model
Parameters from Hull Form and
Wave Characteristics

The identification of model parameters is completely
based upon the hull shape of the container vessel and
upon the wave characteristics. In this section the for-
mulas are presented. The numerical values of those pa-
rameters, computed for the considered container ship,
can be found in Appendix A.
In Table 1 the main characteristics of the container-

ship are reported.
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Table 1: Main characteristics of the container ship
Quantity Sym. Value

Length between perpendiculars LPP 281 m
Beam amidships B 32.26 m
Draught amidships T 11.75 m
Displacement ∇ 76468 m3

Roll radius of gyration rx 12.23 m
Transverse metacentric height GMt 1.84 m

3.1 Body Motion Coefficients
The 1st-order body motion coefficients refer to calm
water hydrostatics and are given by

Zz = ρgA0

Zθ = −ρgA0xf0

Kφ = ∇GMt (22)
Mz = −ρgA0xf0

Mθ = ∇GMl

where ρ is the water density, g is the acceleration of
gravity, A0 is the waterplane area, xf0 is the longitudi-
nal coordinate of the centre of floatation, and GMl is
the longitudinal metacentric height.
The 2nd and 3rd-order body motion coefficients cor-

respond to the variations in the restoring characteris-
tics of the ship due to the changes in pressure related
to the vessel motions. In order to compute them nu-
merically, it is necessary to express the nonlinear hy-
drostatic actions as function of the three modes heave,
pitch, and roll. In particular, it is possible to demon-
strate that

Z(z, φ, θ) = ρg(∇1 −∇0)
K(z, φ, θ) = ρg[∇0zG sinφ

+∇1(yB1 cosφ− zB1 sinφ)] (23)
M(z, φ, θ) = ρg[∇0zG cosφ sin θ −∇1(xB1 cos θ

+ yB1 sinφ cos θ + zB1 cosφ sin θ)]

where ∇0 is the mean displacement, ∇1 = ∇1(z, φ, θ)
is the instantaneous displacement, zG is the vertical co-
ordinate of the centre of gravity, xB1 , yB1 , and zB1 are
the coordinates of the instantaneous centre of buoy-
ancy.
Tables 2-3 show the 2nd and 3rd-order coefficients for

each degree of freedom.

3.2 Hull-Wave Interaction Coefficients
Under the assumption of regular waves, the periodic
wave passage along the hull produces cyclic variation
in the restoring characteristics of the vessel. These

Table 2: 2nd-order hydrostatic restoring coefficients
Heave Roll Pitch

Zzz = −∂
2Z
∂z2 Kzz = 0 Mzz = −∂

2M
∂z2

Zzφ = 0 Kzφ = − ∂2K
∂z∂φ Mzφ = 0

Zzθ = − ∂2Z
∂z∂θ Kzθ = 0 Mzθ = − ∂2M

∂z∂θ

Zφφ = −∂
2Z
∂φ2 Kφφ = 0 Mφφ = −∂

2M
∂φ2

Zφθ = 0 Kφθ = − ∂2K
∂φ∂θ Mφθ = 0

Zθθ = −∂
2Z
∂θ2 Kθθ = 0 Mθθ = −∂

2M
∂θ2

changes are taken into account by the 2nd and 3rd-
order coefficients included in the nonlinear interactions
cpos,sζ and cpos,s2ζ + cpos,sζ2 .
In order to determine the hull-wave interaction coef-

ficients, the Froude-Krylov forces must be defined. The
velocity potential for the undisturbed wave, as defined
in (7), is given by

ϕI =
Awg

ωe
ekz sin(kx cosχ− ky sinχ− ωet). (24)

Therefore, the 1st and 2nd-order Froude-Krylov forces
are:

FFK1
j (t) = ρ

∫∫
∂ϕI
∂t

nj dS (25)

FFK2
j (t) =

1
2
ρ

∫∫
(∇ϕI · ∇ϕI)nj dS (26)

where n is the normal to the hull surface and j ad-
dresses the specific mode for which the force is com-
puted. The coefficients are then given by the formulas
is Tables 4–5.
Due to the assumption of regular waves, the coeffi-

cients can be described as a sum of a sine and a cosine
term. For instance, the 2nd-order term Kζφ(t), which
is proportional to wave amplitude, can be written as

Kζφ(t) = Aw(Kζφc cosωet+Kζφs sinωet) (27)

where Kζφc and Kζφs are constants.
Analogously, the 3rd-order termsKζzφ(t) andKζφθ(t)

are given by

Kζzφ(t) = Aw(Kζzφc cosωet+Kζzφs sinωet) (28)
Kζφθ(t) = Aw(Kζφθc cosωet+Kζφθs sinωet). (29)

These functions play an important role since they para-
metrically excite the coupled system, being multiplied
with, respectively, z(t)φ(t) and φ(t)θ(t).
The 3rd-order term Kζζφ(t), which is proportional to

the wave amplitude squared, is given by

Kζζφ(t) = A2
w(Kζζφ0 +Kζζφc cos 2ωet

+Kζζφs sin 2ωet) (30)
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Table 3: 3rd-order hydrostatic restoring coefficients
Heave

Zzzz = −∂
3Z
∂z3 Zzzφ = 0 Zzzθ = − ∂3Z

∂z2∂θ

Zφφz = − ∂3Z
∂z∂φ2 Zφφφ = 0 Zφφθ = − ∂3Z

∂φ2∂θ

Zθθz = − ∂3Z
∂z∂θ2 Zθθφ = 0 Zθθθ = −∂

3Z
∂θ3

Roll

Kzzz = 0 Kzzφ = − ∂3K
∂z2∂φ Kzzθ = 0

Kφφz = 0 Kφφφ = −∂
3K
∂φ3 Kφφθ = 0

Kθθz = 0 Kθθφ = − ∂3K
∂φ∂θ2 Kθθθ = 0

Pitch

Mzzz = −∂
3M
∂z3 Mzzφ = 0 Mzzθ = − ∂3M

∂z2∂θ

Mφφz = − ∂3M
∂z∂φ2 Mφφφ = 0 Mφφθ = − ∂3M

∂φ2∂θ

Mθθz = − ∂3M
∂z∂θ2 Mθθφ = 0 Mθθθ = −∂

3M
∂θ3

Heave-roll-pitch coupling

Zzφθ = 0 Kzφθ = − ∂3K
∂z∂φ∂θ Mzφθ = 0

Table 4: 2nd-order hydrostatic restoring coefficients due to wave passage
Heave Roll Pitch

Zζz(t) = −∂F
F K1
3
∂z Kζz(t) = 0 Mζz(t) = −∂F

F K1
5
∂z

Zζφ(t) = 0 Kζφ(t) = −∂F
F K1
4
∂φ Mζφ(t) = 0

Zζθ(t) = −∂F
F K1
3
∂θ Kζθ(t) = 0 Mζθ(t) = −∂F

F K1
5
∂θ

where it can be noticed the presence of a constant term
plus a super-harmonic term of double the encounter
frequency.

3.3 Nonlinear Restoring Forces and
Moments Redux

Rewriting the restoring forces and moments (11)–(15),
according to the equations derived in this section gives:

• 1st-order body motions (cpos,s)

Z
(1)
b = Zzz + Zθθ

K
(1)
b = Kφφ (31)

M
(1)
b = Mzz +Mθθ

• 2nd-order body motions (cpos,s2)

Z
(2)
b =

1
2

(Zzzz2 + 2Zzθzθ + Zφφφ
2 + Zθθθ

2)

K
(2)
b = Kzφzφ+Kφθφθ (32)

M
(2)
b =

1
2

(Mzzz
2 + 2Mzθzθ +Mφφφ

2 +Mθθθ
2)

• 2nd-order hull-wave interactions (cpos,sζ)

Z
(2)
h/w = Aw(Zζzcz + Zζθcθ) cosωet

+Aw(Zζzsz + Zζθsθ) sinωet

K
(2)
h/w = Aw(Kζφc cosωet+Kζφs sinωet)φ (33)

M
(2)
h/w = Aw(Mζzcz +Mζθcθ) cosωet

+Aw(Mζzsz +Mζθsθ) sinωet

• 3rd-order body motions (cpos,s3)

Z
(3)
b =

1
6
(
Zzzzz

3 + Zθθθθ
3 + 3Zzzθz2θ

+ 3Zφφzφ2z + 3Zφφθφ2θ + 3Zθθzθ2z

K
(3)
b =

1
6
(
Kφφφφ

3 + 3Kzzφz
2φ

+ 3Kθθφθ
2φ+ 6Kzφθzφθ

)
(34)
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Table 5: 3rd-order hydrostatic restoring coefficients due to wave passage
Heave

Zζζz(t) = −∂F
F K2
3
∂z Zζζφ(t) = 0 Zζζθ(t) = −∂F

F K2
3
∂θ

Zζzz(t) = −∂
2F

F K1
3
∂z2 Zζzφ(t) = 0 Zζzθ(t) = −∂

2F
F K1
3

∂z∂θ

Zζφφ(t) = −∂
2F

F K1
3

∂φ2 Zζθθ(t) = −∂
2F

F K1
3
∂θ2 Zζφθ(t) = 0

Roll

Kζζz(t) = 0 Kζζφ(t) = −∂F
F K2
4
∂φ Kζζθ(t) = 0

Kζzz(t) = 0 Kζzφ(t) = −∂
2F

F K1
4

∂z∂φ Kζzθ(t) = 0

Kζφφ(t) = 0 Kζθθ(t) = 0 Kζφθ(t) = −∂
2F

F K1
4

∂φ∂θ

Pitch

Mζζz(t) = −∂F
F K2
5
∂z Mζζφ(t) = 0 Mζζθ(t) = −∂F

F K2
5
∂θ

Mζzz(t) = −∂
2F

F K1
5
∂z2 Mζzφ(t) = 0 Mζzθ(t) = −∂

2F
F K1
5

∂z∂θ

Mζφφ(t) = −∂
2F

F K1
5

∂φ2 Mζθθ(t) = −∂
2F

F K1
5
∂θ2 Mζφθ(t) = 0

M
(3)
b =

1
6
(
Mzzzz

3 +Mθθθθ
3 + 3Mzzθz

2θ

+ 3Mφφzφ
2z + 3Mφφθφ

2θ + 3Mθθzθ
2z
)

• 3rd-order hull-wave interactions (cpos,s2ζ

+cpos,sζ2)

Z
(3)
h/w = Zζzz(t)z2 + Zζφφ(t)φ2 + Zζθθ(t)θ2

+ Zζzθ(t)zθ + Zζζz(t)z + Zζζθ(t)θ

K
(3)
h/w = Kζzφ(t)zφ+Kζφθ(t)φθ

+Kζζφ(t)φ (35)

M
(3)
h/w = Mζzz(t)z2 +Mζφφ(t)φ2 +Mζθθ(t)θ2

+Mζzθ(t)zθ +Mζζz(t)z +Mζζθ(t)θ

4 Matlab Implementation of the
Model

A Matlab/Simulink model for the container ship model
was developed for the purposes of simulating paramet-
ric roll resonance, based on the model of Section 2.
For each time instant and system state, a function

generates the instantaneous value of [ṡT s̈T]T. Numeri-
cally integrating with an explicit Runge-Kutta method
of order 4, with the fixed time step h = 1 s, the state
[sT ṡT]T is calculated for any given time instant.
The parameters used in the calculations are listed in

Appendix A. While this was not done for the results

presented in this paper, for other encounter frequen-
cies than the ones used in the experiments, interpola-
tion can be applied to calculate approximate parameter
values.
The code is part of the Marine Systems Simulator

(MSS, 2007).

5 Validation of the Model
Against Experimental Data

A comparison of the simulation and the experimental
results can be seen in Figures 2–24.
The experiments were conducted with a 1:45 scale

model ship in a towing tank. The experiments were
done with varying forward speed, and wave frequency
and height. This is summarized in Table 6. All data
in the table and in the figures are in full scale.
The simulations were done with the code described

in Section 4. All simulations were made ballistically.
Initial conditions can be found in Table 7. Initial con-
ditions not listed in the table (θ, ż, φ̇ and θ̇) were all
zero. The experiments were all assumed to start at
t = 0.
A comparison of the simulation results with the ex-

perimental results can be seen in Table 8. The first
column is the experiment number. The second column
is wave amplitude Aw. The third column is wave fre-
quency ω. The fourth column is the ratio of encounter
frequency to natural roll frequency (ωe/ω0). The fifth
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Table 6: Experimental conditions
Exp. U [m/s] ω [rad/s] Aw [m] ωe [rad/s]

1172 5.4806 0.4640 2.5 0.5844
1173 5.4806 0.4425 2.5 0.5519
1174 5.4806 0.4764 2.5 0.6031
1175 5.4806 0.4530 2.5 0.5677
1176 5.4806 0.4893 2.5 0.6231
1177 5.4806 0.4640 1.5 0.5844
1178 5.4806 0.4699 1.5 0.5933
1179 5.4806 0.4583 1.5 0.5756
1180 5.4806 0.4640 3.5 0.5844
1181 5.4806 0.4425 3.5 0.5519
1182 5.4806 0.4893 3.5 0.6231
1183 5.4806 0.4530 3.5 0.5677
1184 5.7556 0.4640 2.5 0.5904
1185 6.0240 0.4640 2.5 0.5963
1186 6.2990 0.4640 2.5 0.6023
1187 6.5740 0.4640 2.5 0.6084
1188 7.1241 0.4640 2.5 0.6204
1189 7.6675 0.4640 2.5 0.6324
1190 7.3991 0.4640 2.5 0.6265
1191 5.2056 0.4640 2.5 0.5783
1192 4.6555 0.4640 2.5 0.5662
1193 4.9305 0.4640 2.5 0.5723

Table 7: Simulation initial conditions
Exp. z0 [m] φ0 [rad]

1172 0.0250 3.4907e-3
1173 0.0500 3.4907e-2
1174 0.0500 3.4907e-5
1175 0.0500 1.7453e-4
1176 0.0500 1.7453e-5
1177 0.0500 1.3963e-2
1178 0.0500 8.7266e-3
1179 0.0500 3.4907e-2
1180 0.0500 8.7266e-5
1181 0.0500 3.4907e-2
1182 0.0500 1.7453e-5
1183 0.0500 8.7266e-6
1184 0.0500 1.7453e-3
1185 0.0500 5.2360e-4
1186 0.0500 8.7266e-5
1187 0.0500 5.2360e-4
1188 0.0500 5.2360e-4
1189 0.0500 2.4435e-3
1190 0.0500 1.7453e-4
1191 0.0500 3.4907e-3
1192 0.0500 3.4907e-2
1193 0.0500 1.7453e-3

Table 8: Simulation results
Exp. Aw ω ωe/ω0 max |φsim| max |φexp| Error %

1179 1.5 0.4583 1.9337 2.0000 0.4729 323

1177 1.5 0.4640 1.9633 8.0982 17.1140 -53

1178 1.5 0.4699 1.9932 12.0995 22.5530 -46

1173 2.5 0.4425 1.8541 2.0000 0.7142 180

1175 2.5 0.4530 1.9072 0.6084 0.7215 -16

1192 2.5 0.4640 1.9021 9.7799 0.8944 993
1193 2.5 0.4640 1.9226 11.8080 1.8932 524
1191 2.5 0.4640 1.9428 13.5465 21.7800 -38
1172 2.5 0.4640 1.9633 15.1622 23.9270 -37
1184 2.5 0.4640 1.9834 16.5792 22.7810 -27
1185 2.5 0.4640 2.0032 17.8812 20.8780 -14
1186 2.5 0.4640 2.0234 19.2712 21.5640 -11
1187 2.5 0.4640 2.0439 20.4611 20.4990 0
1188 2.5 0.4640 2.0842 22.4097 22.7190 -1
1190 2.5 0.4640 2.1047 23.4472 1.4291 1541
1189 2.5 0.4640 2.1245 24.2884 1.4368 1590

1174 2.5 0.4764 2.0261 21.4924 26.6960 -19

1176 2.5 0.4893 2.0933 26.7459 1.2581 2026

1181 3.5 0.4425 1.8541 2.0000 2.0352 -2

1183 3.5 0.4530 1.9072 11.0859 8.9410 24

1180 3.5 0.4640 1.9633 18.8898 23.9530 -21

1182 3.5 0.4893 2.0933 30.2110 24.9870 21
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column is maximum roll amplitude for the simulations
(max |φsim|). The sixth is maximum roll amplitude for
the experiments (max |φexp|). The seventh and final
column is the percentage error given by

100
max |φsim| −max |φexp|

max |φexp|
,

rounded to integer value. Note that most of the exper-
iments were stopped before the final steady-state roll
angle could be achieved due to fear of vessel capsizing.
Figures 2–22 show heave, roll and pitch as functions

of time, both experimental and simulated.
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Figure 2: Exp. 1172. Exp. dashed red, sim. solid blue.
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Figure 3: Exp. 1173. Exp. dashed red, sim. solid blue.

In Figure 24, we can see the maximum roll angle
achieved in the simulations and experiments for cer-
tain conditions, plotted against the ratio of encounter
frequency to natural roll frequency (ωe/ω0). The data
in the figure is all for Aw = 2.5 m, and ω = 0.4640
rad/s.

0 200 400 600 800 1000
−2

−1

0

1

2

z 
[m

]

0 200 400 600 800 1000
−30

−15

0

15

30

φ 
[d

eg
]

0 200 400 600 800 1000
−3

−1.5

0

1.5

3

θ 
[d

eg
]

time [s]

Figure 4: Exp. 1174. Exp. dashed red, sim. solid blue.
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Figure 5: Exp. 1175. Exp. dashed red, sim. solid blue.
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Figure 6: Exp. 1176. Exp. dashed red, sim. solid blue.
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Figure 7: Exp. 1177. Exp. dashed red, sim. solid
blue.
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Figure 8: Exp. 1180. Exp. dashed red, sim. solid
blue.

0 200 400 600 800 1000
−2

−1

0

1

2

z 
[m

]

0 200 400 600 800 1000
−30

−15

0

15

30

φ 
[d

eg
]

0 200 400 600 800 1000
−3

−1.5

0

1.5

3

θ 
[d

eg
]

time [s]

Figure 9: Exp. 1178. Exp. dashed red, sim. solid
blue.
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Figure 10: Exp. 1181. Exp. dashed red, sim. solid
blue.
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Figure 11: Exp. 1179. Exp. dashed red, sim. solid
blue.
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Figure 12: Exp. 1182. Exp. dashed red, sim. solid
blue.
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Figure 13: Exp. 1183. Exp. dashed red, sim. solid
blue.
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Figure 14: Exp. 1186. Exp. dashed red, sim. solid
blue.
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Figure 15: Exp. 1184. Exp. dashed red, sim. solid
blue.
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Figure 16: Exp. 1187. Exp. dashed red, sim. solid
blue.
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Figure 17: Exp. 1185. Exp. dashed red, sim. solid
blue.
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Figure 18: Exp. 1188. Exp. dashed red, sim. solid
blue.
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Figure 19: Exp. 1189. Exp. dashed red, sim. solid
blue.
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Figure 20: Exp. 1192. Exp. dashed red, sim. solid
blue.
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Figure 21: Exp. 1190. Exp. dashed red, sim. solid
blue.
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Figure 22: Exp. 1193. Exp. dashed red, sim. solid
blue.
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Figure 23: Exp. 1191. Exp. dashed red, sim. solid
blue.
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Figure 24: Max. roll angle vs ωe/ω0 for Aw = 2.5
m, ω = 0.4640 rad/s. Exp. dashed red,
sim. solid blue.
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6 Analysis of the Model Based
Upon the Validation Results

The 3rd-order model developed for the 281m long con-
tainer ship shows high capabilities in reproducing the
vertical and transversal dynamics of the vessel under
parametric resonance conditions, as shown by the com-
parison of the experimental results (Figures 2–24).

Considering the 13 experiments where parametric
resonance did occur, the implemented model performs
well: starting from similar initial conditions and being
subjected to the same excitation forces used during the
experiments, the model develops parametric resonance
within the same time frame as the 1:45 scale model
ship in most of the cases.

The most obvious differences between the simulation
and the experimental results consists of the amplitude
of the oscillations. In all the experiments where para-
metric resonance occurred, the peak value of the roll
oscillations is higher than the saturation level at which
the model settles. Although the model has a general
tendency to underestimate the peak value of the roll
motion, the gap is relatively small in most cases.

Considering the 9 experiments where parametric roll
did not occur, the model produced 5 false positive cases
developing resonant motion. In order to understand
this disagreement between model behavior and experi-
mental results, the tuning factor ωe/ω0 must be taken
into consideration. In fact all the 5 false-positive cases
occur with a tuning factor close to the limits of the
first instability region of the Hill-Mathieu Equation
(ωe ≈ 2ω0), as shown in Figure 24. Looking at the peak
value of the roll oscillations (Figure 24 and Table 8), it
is seen that the largest differences are in the region of
high tunings (ωe

ω0
> 2.1) for which the model predicts

large roll motion whereas the experiments showed no
amplification. It seems obvious that when the experi-
mental conditions are close to the limits of stability the
model does not match exactly the frequency at which
the abrupt variation in roll motion take place.

The errors indicated in tests 1173, 1179 and 1181
have no real physical meaning, since the initial condi-
tion of 2 degrees was chosen arbitrarily high in order
to indicate a decaying motion.

For all 22 experiments, heave and pitch dynamics
have shown relatively good agreement with the exper-
iments. In all the test runs the two modes oscillates
at the excitation frequency, matching the experimen-
tal records. The amplitude of the oscillations is close
to that of the experimental values.

7 Conclusions

A Matlab/Simulink benchmark for the simulation of
parametric roll resonance for a large container ship has
been implemented and validated against experimental
results. The implementation reflects the coupled 3rd-
order nonlinear model for parametric roll first intro-
duced by Neves and Rodríguez (2005).
The mathematical model for the container ship at

hand, already presented in Rodríguez et al. (2007), has
been reviewed, illustrating in details the ship dynamics
that has been taken into account. 1st, 2nd and 3rd-order
contributions have been described and analytical for-
mulas of all the couplings coefficients due to heave, roll,
pitch, and wave motion have been given. Furthermore,
numerical values of all coefficients are computed based
upon the hull geometry and wave characteristics.
The benchmark has been tested on a set of 22 differ-

ent conditions, which have been chosen to match the
experimental conditions. Each test run differs from
the previous for at least the value of one parameter
among ship speed, wave frequency, and wave height.
The heave and pitch dynamics described by the model
are in good accordance with the experimental results.
The model seems to reproduce the pitch motion slightly
better, catching the right amplitude in most of the
cases.
The results obtained in roll have shown good agree-

ment with the records of the experiments. In particu-
lar, the model agrees with the experiments in all the
cases where parametric roll occurred, although the am-
plitude of the roll oscillations does not quite reach the
experimental peak value in most cases.
For the experiments where there was no parametric

roll, then the model produces false positives in about
50% of the cases. This disagreement between the sim-
ulation and the experimental results is believed to be
related to the specific values of the tuning factor ωe/ω0

which were too close to the limits of the first instability
region of the Hill-Mathieu Equation. In these cases, it
is very difficult to get the correct response with ballistic
simulations.
The availability of this benchmark offers a wide range

of opportunities for development of new model-based
control strategies for counteracting or preventing para-
metric roll resonance.

A Tables of Coefficients

The parameters can be found in Tables 9–16. All num-
bers are given in the kg-m-s (SI) system. Only non-zero
numbers are listed.
Table 9 contains the rigid body inertia matrix, and

Table 10 the added mass. Table 11 contains the hydro-
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dynamic damping parameters, while Table 12 contains
the body motion parameters. Table 13 contains the
wave motion parameters for heave. Table 14 contains
the wave motion parameters for roll. Table 15 contains
the wave motion parameters for pitch. Table 16 con-
tains the external wave excitation parameters. Note
that α3 and α5 are given in radians.

Table 9: Rigid body inertia
m Ix Iy

7.72e7 1.41e10 2.99e11

Table 12: Restoring force (motions)
Heave Roll Pitch

Zz = 7.9882e7 Kφ = 1.4340e9 Mz = 7.6622e8
Zθ = 7.6622e8 Kφφφ= 1.7844e10 Mθ = 4.1365e11
Zzz =-3.0014e6 Kzφ =-8.4268e7 Mzz =-2.4985e8
Zzθ =-2.4986e8 Kφθ =-1.4090e10 Mzθ =-4.9230e10
Zzφ =-2.9468e8 Kzzφ= 7.9738e7 Mzφ =-2.0614e10
Zθθ =-4.9230e10 Kφθθ = 1.5400e11 Mθθ =-4.8730e12
Zzφφ= 2.8817e8 Mzφφ= 2.7052e10
Zφφθ= 2.7052e10 Mφφθ= 4.1064e12
Zθθθ = 1.5324e9 Mθθθ = 8.5664e11

Table 14: Restoring force roll (wave)
ω Kζφc Kζφs

0.4425 -2.0159e8 5.0131e7
0.4530 -2.2088e8 3.9835e7
0.4583 -2.2955e8 2.9048e7
0.4640 -2.3800e8 1.7097e7
0.4699 -2.4571e8 -1.4401e7
0.4764 -2.5289e8 -2.0107e7
0.4893 -2.6271e8 -5.1159e7
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