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Abstract

This paper illustrates the potential of nonlinear model-based control applied for stabilization of unsta-
ble flow in oil wells. A simple empirical model is developed that describes the qualitative behavior of
the downhole pressure during severe riser slugging. A nonlinear controller is designed by an integrator
backstepping approach, and stabilization for open-loop unstable pressure setpoints is demonstrated. The
proposed backstepping controller is shown in simulations to perform better than PI and PD controllers for
low pressure setpoints, and is in addition easier to tune. Operation at a low pressure setpoint is desirable
since it corresponds to a high production flow rate. The simulation results are presented to illustrate the
effectiveness of proposed control scheme.
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1 Introduction

In tail production, i.e. oil production from mature
fields where the reservoir is about to be drained, un-
stable multiphase flow from wells — or severe slugging
— is an increasing problem. In particular, unstable
flow causes reduced production and oil recovery as the
well must be choked down for the downstream process-
ing equipment on the platforms to be able to handle
the resulting variations in liquid and gas flow rates.

Active control of the production choke at the well
head can be used to stabilize or reduce these insta-
bilities. Conventionally, this is done by applying PI
control to a measured downhole pressure to stabilize
this at a specified set point, thus stabilizing the flow.
For wells, however, PI control is often insufficient: Ei-
ther it is not robust and requires frequent re-tuning, or
it does not achieve proper stabilization at all.

Consequently, improved methods for stabilization of
slugging wells have significant potential for increased
production and recovery. Typically, there is dynamics
between the choke input and the measured pressure

such that the PI controller reacts too late to compen-
sate the instabilities in the flow. In these cases, a sim-
ple model may be used to develop a model-based con-
trol law which more intelligently counteracts the desta-
bilizing mechanisms in unstable flow, i.e., balances the
pressure oscillations in the well. This work presents
some preliminary efforts in that direction.

Based on the observation that the system behaves
like a stable limit cycle, a simple empirical model is
developed that describes the main qualitative behavior
of the downhole pressure during slugging. This model
is then used to perform a preliminary analysis of non-
linear model-based control applied to stabilize the sys-
tem.

The paper is organized as follows: First, in Section 2,
we provide a background description and a brief litera-
ture review of unstable multiphase flow — or slugging,
and how this instability is conventionally handled. In
Section 3 we propose a simple empirical model that
describes the main qualitative properties of this un-
stable phenomena, to be used for analysis and design
of a model-based control law. In Section 4, we illus-
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trate the design of a nonlinear control law by integrator
backstepping, and in Section 5, we compare the perfor-
mance of the nonlinear controller with the conventional
PI-controller and a PD-controller. Finally, in Section
6, we draw some brief conclusions.

2 Unstable multiphase flow

Multiphase flow instabilities can be present in all
phases of the lifetime of a field, however, the likelihood
for multiphase flow instabilities increases when enter-
ing tail production. In tail production, the reservoir
pressure typically decrease, yielding lower fluid veloci-
ties and increased gas-liquid ratio (GLR). In addition,
the water cut (water fraction) tends to increase, mak-
ing the liquid denser. Low velocities and increased liq-
uid density, yield a potential for unstable flow in wells
and pipelines due to gravity dominated pressure loss.
In many cases, the wells and production lines enter
a slug flow regime where liquid slugs are followed by
gas pockets yielding large oscillations in the flow rate
and phase distribution as seen from the outlet of the
pipe/well. This alternating flow regime, referred to as
severe slugging, poses a serious operational challenge
for the downstream process. In typical offshore pro-
duction processes there is no buffer capacity to handle
the flow variations due to severe slugging, resulting in
poor separation and process utilization, and in worst
case, shut-down of the process. In addition, the trend
in offshore developments is to tie in smaller discover-
ies to existing infrastructure, yielding longer transport
distances with multiphase flow. The flow assurance
strategy including the control solutions must then be
carefully selected including the control solution in or-
der for efficient and safe transportation of the fluids to
the separation facility.

For unstable flow, several mechanisms can cause the
instability depending on the geometry, fluids and pro-
cess equipment. A description of slug flow and the un-
derlying mechanisms for it can be found in Pickering
et al. (2001).

Severe slugging in pipeline-riser systems has received
much attention in the literature and in the industry.
A schematic of the severe slugging cyclic behavior is
shown in Figure 1, where the main phases of the for-
mation of a slug is illustrated In the first sub-figure,
liquid blocks the low point of the pipeline-riser system,
preventing the gas from passing. Liquid flows from the
riser and into the slug by gravity and causes the slug
to grow and fill the riser. The pressure in the pipeline
increases due to the inlet flow of gas and the increased
liquid head. In the “slug production phase” the liquid
slug has reached the top of the riser and flows into the
separator. The pressure in the pipeline has steadily

Figure 1: Schematics of the severe slug cycle in flowline
riser systems Pickering et al. (2001)

increased and is now large enough to push the liquid
slug out of the riser. When the tail of the liquid slug
enters the riser, the pressure drops due to the reduced
static head of the liquid column which causes the gas
to expand and accelerate the “blow out phase”. When
the gas has left the riser, the velocities in the riser are
too low to carry any liquid up the riser and the process
starts over (“liquid fall-back phase”).

Storkaas (2005) present a relatively simple first
principle-based model which captures the main dynam-
ics of a severe slugging flow regime (Storkaas et al.,
2003) in pipeline-riser systems, referred to as riser slug-
ging. The model is able to reproduce observed unstable
flow for a particular test case, however, it is not straight
forward to extend the model to other geometries, e.g.
wells. Storkaas (2005) observed that when plotting the
bottom hole pressure versus choke valve opening, the
system is stable at low valve openings (fixed choking),
while when increasing the choke valve opening above a
certain value (the bifurcation point), the system starts
to oscillate and enters a stable limit cycle.

Slugging is not restricted to pipeline-riser systems.
Existing drilling technology makes it possible to drill
long horizontal wells which yields a geometry that re-
sembles a pipeline-riser geometry. Instabilities in gas-
lift wells (casing-heading instabilities) has been ob-
served in practice (Jansen et al., 1999), and recent aca-
demic work on the phenomena can be found in Eikrem
(2006) and Sinègre (2006). The instabilities in gas-lift
wells are due to the interacting between the gas cas-
ing and production tubing, where the underlaying phe-
nomena and solutions for stabilizing the casing-heading
instability has been to a large extent solved. Unstable
flow in production wells can be as severe for the produc-
tion as terrain induced slugging in pipeline-riser sys-
tems, but the underlaying instability mechanisms are
not fully understood (Dalsmo et al., 2002).
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2.1 Slug modelling and prediction

Several methods for predicting the stability of multi-
phase flow have been proposed. The simplest approach
is to use flow maps which categorizes the different flow
regimes as a function of superficial gas and liquid ve-
locities. The flow maps vary significantly with flow
conditions (such as pipeline geometry), such that ex-
periments are necessary in order to obtain accurate
predictions. Local methods such as Kelvin-Helmholtz
stability criteria (Lin and Hanratty, 1986; Taitel and
Dukler, 1975) can predict local flow regimes. However,
for the overall dynamics of the pipeline, these methods
are not suited. With respect to severe slugging, sev-
eral conditions has been proposed (Bøe, 1986; Schmidt
et al., 1985; Taitel, 1986). These criteria are based on
steady state analysis which usually requires variables
that are not readily available.

In order to predict severe slugging, a dynamic model
of the pipe is necessary. An approach based on the
dynamic DAE models of the system is presented in
Zakarian (2000). The approach is based on a fixed ge-
ometry of a pipe and riser, where a criterion for the
stability of the system is derived based on linear anal-
ysis. Based on a nonlinear analysis, it is shown that
the severe slugging phenomenon is a hydrodynamic in-
stability due to a supercritical Hopf bifurcation. The
method has not been extended to other geometries,
which limits its usefulness.

Predicting and modelling unstable flow in produc-
tion wells is complex and the existing state-of-the-art
model for multiphase flow (OLGA2000) is not capable
of reproducing the instabilities observed for wells. In
addition, the dynamics of the near well–bore reservoir
region, is not satisfactorily understood, which compli-
cates modelling further.

2.2 Handling slugging

When it comes to handling unstable slug flow, several
remediation strategies has been proposed. These can
be categorized as:

2.2.1 Design modifications

• Slug catcher: A solution which is robust is to use
a slug catcher which will act as a buffer and as a
first stage separator. This solution is acceptable
for smaller hydrodynamic slugs (10 m3). For se-
vere slugs (on the order of 100 m3) the required
vessel will be excessive in size and weight for some
development projects.

• Pipeline diameter: In the design phase pipe diam-
eter can be optimized to avoid slugging. Small di-
ameter pipes results in large fluid velocities. Typ-

ically, hydrodynamic slugs are generated at high
velocities and severe slugging is generated at low
velocities. Finding a diameter that is acceptable
for a wide range of flow rates can be difficult. In
addition the increased pressure drop for a small di-
ameter piping will increase the frictional pressure
drop which is undesirable from a production per-
spective. Variable diameter pipes are one possible
solution (e.g. a “velocity string“ where a smaller
pipe is inserted in the existing riser as a retrofit
solution (Tengesdal et al., 2003)). No applications
of this technology has been published in the liter-
ature.

• Homogenising multiphase flow: In order to break
the intermittent flow, surfactants can be added
(Wilkins et al., 2003). The effect of the surfac-
tants on separation has a negative sideeffect which
makes it less desirable.

• Separator control: The slug suppression system
(S3) (Kovalev et al., 2003) install a small separator
upstream the main separator and control the flow
rate of oil and gas using the gas outlet valve in
order to stabilize the flowline . Several successful
installations has been published (Kovalev et al.,
2004). The mini-separator can also be replaced
with a larger diameter pipe with a gas outlet.

2.2.2 Operational modifications

• Fixed choking: By reducing the choke opening,
the increased backpressure will eventually domi-
nate the pressure drop in the riser and move the
flow system into the stable region (Schmidt et al.,
1980; Farghaly, 1987). In most cases, the in-
creased backpressure resulting from reduced choke
opening is unwanted as it lowers the production
rate from the well.

• Active choke: Several publications describe the
use of active feedback control in order to stabilize
the flow (Henriot et al., 1999; Drengstig and Mag-
ndal, 2002; Molyneux et al., 2000; Dalsmo et al.,
2002; Kinvig and Molyneux, 2001; Godhavn et al.,
2005; Storkaas, 2005). The motivation for using
active feedback control is that one can operate
the pipeline/well in an unstable operating region,
where the system is open-loop unstable.

• Gas lift: In systems which use gas lift for pro-
duction enhancement, the gas lift flow rate can be
used to move the system into an open-loop stable
region. Typically, the gas lift capacity is a limited
resource which in some cases makes it impossible
to move the system into the stable region.
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3 Modelling

The oscillating behavior of the downhole pressure of
a slugging well can be characterized as a stable limit
cycle. Severe slugging exhibits qualitatively the same
behavior as the slightly modified van der Pol equation

ṗ = w, (1)

ẇ = a1(β − p) + a2(ζ − w2)w, (2)

where the states p and w are the down hole pressure
in the well and its time derivative, respectively. The
coefficients in (1)–(2) can be explained as follows.
• β: steady state pressure.
• a1: frequency or stiffness of the system.
• a2, ζ: local “degree of the stability/instability” and
amplitude of the oscillation.

3.1 The equilibrium downhole pressure β

The equilibrium point (p∗, w∗) of the system (1)–(2)
becomes

[

p∗

w∗

]

=

[

β
0

]

,

which means that the parameter β is simply the equi-
librium downhole pressure p∗. The equilibrium down-
hole pressure p∗ = β is given by

β = ρ̄gH + ∆pf + ∆pc + p0. (3)

where ρ̄gH is the static head with ρ̄ being the average
density in the riser, ∆pf the frictional pressure drop,
∆pc the pressure drop over the production choke, and
p0 the pressure downstream the choke. For a given
reservoir influx wres, the differential pressure over the
production choke is given by its flow characteristic ac-
cording to

∆pc (wres) =
w2

res

(Kcuc)
2
ρc

, (4)

where ρc is the density upstream the choke, uc the
choke opening, and Kc the flow constant of the choke.
Furthermore, the average density ρ̄ (wres) is a decreas-
ing function of wres determined by the liquid holdup,
and the frictional pressure drop ∆pf (wres) is like (4),
an increasing function of wres according to

∆pf = Kfw2

res.

In the simplest case, we may assume constant influx
wres such that β can be given in the lumped form

β (q) = b0 + b1q, (5)

where b0 and b1 are positive constants, and q is propor-
tional to the differential pressure ∆pc at steady-state
flow wres. In Figure 2, β is plotted as a function of the
choke opening.

3.2 Local Degree of Stability/Instability
a2,ζ

The parameters a2 and ζ are related to the amplitude
of oscillation and stability properties of the fixed point.
This can be seen by linearizing system (1)–(2) to get

∆̇p = ∆ω, (6)

∆̇ω = −a1∆p + a2ζ∆ω. (7)

The eigenvalues of the system are λ =
a2ζ±

√
a2

2
ζ2−4a1

2
,

which means that (assuming a1 > 0 and a2 > 0)

• ζ = 0, bifurcation point.

• ζ < 0, system is stable.

• ζ > 0, system is unstable.

In the simplest case, we may assume constant flow rates
of liquid and gas from the reservoir. Then

ζ (q) = c0 − c1q, (8)

where c0/c1 denotes the bifurcation point and c0, c1 are
positive constants.
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Figure 2: Bifurcation plot

3.3 Transportation Delay

The variable q is related to the effect the differential
pressure over the production choke has on the dynam-
ics of (1)–(2). Due to transport delay in the well, a
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time-lag is expected between application of the con-
trol signal to the choke and seeing the effect in (1)–(2).
This time-lag is modelled as follows

q̇ = −1

τ
q +

1

τ
δ, (9)

where δ represents the control input and is a strictly
decreasing function of the production choke opening
u ∈ [0, 1]. Thus, when δ is computed, the actual control
signal to apply to the choke is found by inverting δ(u).
It is assumed that δ → ∞ as u → 0, and that δ ≥
δmin ≥ 0. Without loss of generality, we let δmin = 0.

3.4 Simplified Model of Riser Slugging

Based on (5) and (8), the system dynamics (1)–(2) and
(9) can be assembled into

ṗ = w, (10)

ẇ = −a1p + h (w) + g (w) q + a1b0 (11)

q̇ = −1

τ
q +

1

τ
δ, (12)

where the functions h and g are defined as

h (w) = a2c0w − a2w
3

= h0w − h1w
3 (13)

g (w) = a1b1 − a2c1w

= g0 − g1w. (14)

The positive constants ai, bi and ci (i = 1, 2) are empir-
ical parameters that are adjusted to produce the right
behavior of the downhole pressure p.
The system (10)–(12) can capture some of the quali-
tative properties in the downhole pressure during riser
slugging.

• Decreasing control gain: A characteristic property
of riser slugging is that the static gain decreases
with choke opening.

• Bifurcation: The model exhibits the characteristic
bifurcation that occurs at a certain choke opening
c0/c1, i.e., the steady-state response of the down-
hole pressure exhibits changes from a stable point
when choke opening is smaller than c0/c1 to a sta-
ble limit cycle when choke opening is larger that
c0/c1 (see Figure 2).

• Time lag: The transportation delay between a
change in choke opening to the resulting change
in downhole pressure p is modeled by simple 1st-
order lag.

Our objective is to design a control law for the control
input δ which stabilizes p at the desired set-point pref .

4 Controller Design

In this section we design stabilizing controllers using
backstepping. Thus, we iteratively look for a change
of coordinates in the form

z1 = p − pref , (15)

z2 = w − αw, (16)

z3 = q − αq, (17)

and an accompanying Lyapunov function. The func-
tions αw and αq are virtual controls to be determined.

4.1 Control Scheme I

Step 1 — virtual control law αw

From (10), (15) and (16), we obtain that

ż1 = αw + z2.

Then we design a virtual control law αw

αw = −C1z1. (18)

The time-derivative of U1 = 1

2
z2

1
becomes

U̇1 = −C1z
2

1
+ z1z2. (19)

Step 2 — virtual control law αq

We start by computing the time-derivative of z2

using (11) and (15)–(17), obtaining

ż2 = −a1(z1 + pref − b0) + h (w)

+g (w) αq + g (w) z3 − α̇w. (20)

If we for now ignore (14) and instead assume that
g(w) ≥ g0 > 0, we may choose the virtual control αq

as

αq =
1

g (w)
(−C2z2 − z1 + a1(z1 + pref − b0)

−h (w) − a1b0 + α̇w). (21)

Consider the CLF

U2 = U1 +
1

2
z2

2
. (22)

The time derivative of U2 is

U̇2 = −C1z
2

1
− C2z

2

2
+ g (w) z2z3. (23)

Step 3 — Final control law δ
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The dynamics of z3 is obtained as

ż3 = q̇ − α̇q

= −1

τ
q +

1

τ
δ − α̇q. (24)

Selecting

δ = −τC3z3 − τg(w)z2 + αq + τα̇q, (25)

the derivative of the control Lyapunov function

U3 = U2 +
1

2
z2

3
(26)

becomes

U̇3 = −C1z
2

1
+ g(w)z2z3 + z3

(

−1

τ
q +

1

τ
δ − α̇q

)

≤ −C1z
2

1
− C2z

2

2
− C3z

2

3
, (27)

which proves that the equilibrium (z1, z2, z3) = 0 is
globally exponentially stable, and in particular p is reg-
ulated to the setpoint pref . The rate of convergence is
adjustable through the constants C1, C2, and C3, and
we may in principle have any desirable performance of
the system. The resulting control law is

δ (p,w, q)

= −τC3q − τg (w) (w + C1 (p − pref ))

+
1

g2 (w)

[

τ
(

(C3 + 1) g (w) − g′ (w)
(

h (w) +

−a1 (p − b0) + g (w) q
))(

− (C1 + C2) w − h (w)

− (C1C2 + 1 − a1) (p − pref ) + a1 (pref − b0)
)

]

− 1

g (w)

[

τ (C1 + C2 + h′ (w))
(

− a1 (p − b0)

+h (w) + g (w) q
)

+ τ (C1C2 + 1 − a1) w
]

(28)

Remark 1. We refer to this choice of αq as an exact
cancelling design because we simply cancel existing dy-
namics and replace it with some desirable linear feed-
back terms: −C1z1 and −C2z2. Note that this design
is not necessarily the best choice of control law because
stabilizing nonlinearities may be cancelled, potentially
wasting control effort, losing robustness to modelling
errors, and making the control law overly complicated.
As can be seen in (28), the controller becomes quite
complicated as a result of the virtual controls and their
time derivatives occuring in it. It is desirable to obtain
a simpler control law, which is possible if simple vir-
tual controls can be found by avoiding cancellation of
useful nonlinearities.

4.2 Control Scheme II

The design of the previous Section is a straight forward
application of the backstepping technique. However, it
ignores (14) as well as the fact that the control input δ
saturates at 0. In this section, a better control law will
be obtained by exploiting the structure of the system in
terms of the specific choices for h(w) and g(w) in (13)–
(14), and the flexibility of the backstepping procedure
in selecting virtual control laws.

By inspection of the second step of backstepping
in the previous section, we recognize that the terms
−h1w

3 and −g1wq are expected to be stabilizing, since
physically q ≥ 0. Hence, cancelling these terms is not
necessary at this point in the design. Substituting (13)
and (14) into (20), and selecting αw = 0 and

αq = −C2 + h0

g0

z2 +
a1

g0

(pref − b0) , (29)

U2 =
a1

2
z2

2
+

1

2
z2

2
, (30)

gives

U̇2 = − (C2 + g1q) z2

2
− h1z

4

2
+ g0z2z3. (31)

Here, we notice that the z1z2-cross-term was cancelled,
due to the particular choice of U2 and αw. The stabi-
lizing terms −h1z

3

2
and −g1αqz2 increase negativity of

U̇2, and need not be compensated for at this point.
Consider now the CLF

U3 = U2 +
1

2
z2

3
. (32)

It’s time derivative is

U̇3 = − (C2 + g1q) z2

2
− h1z

4

2

+z3

(

g0z2 −
1

τ
q +

1

τ
δ − α̇q

)

, (33)

and we may select

δ = −τC3z3 − τg0z2 + q + τα̇q, (34)

to obtain

U̇3 = − (C2 + g1q) z2

2
− h1z

4

2
− C3z

2

3
. (35)

LaSalle’s invariance principle now implies that the ori-
gin is asymptotically stable. The following result for-
malizes this, and in addition takes saturation of δ into
account.

Theorem 1. Let pref > b0, C2 > 0 and C3 > 0.
Then the equilibrium xref = (pref , 0, a1(pref − b0)/g0)
of system (10)–(12) in closed loop with the saturated
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control
δ = max{0, δa}

where

δa(p,w, q)

=
(C2 + h0)

g0

[

τa1p(t) − τ(C3 + h0)w(t)

+τh1w
3(t) + τg1w(t)q(t) − τa1b0

]

−τg0w(t) + (1 − τ(h0 + C2 + C3)) q(t)

+
a1τC3

g0

(pref − b0) (36)

is asymptotically stable. If

C2 ≤ 1

2τ
− h0, (37)

then the set

A =
{

(p,w, q)
∣

∣

∣
p ≥ p

0
, w

0
≤ w ≤ w̄0, q ≥ 0

}

(38)

where

p
0

=
1

4
(3pref + b0) (39)

w
0

= −min







g0

2τg1(C2 + h0)
, 3

√

a1(pref − b0)

4h1







(40)

w̄0 =
a1(C2 + h0)(pref − b0)

4(g2

0
+ C2h0 + h2

0
)

(41)

is contained in the region of attraction of xref .

Proof: The condition pref > b0 ensures that δa > 0
at the equilibrium z = (z1, z2, z3) = 0. Thus, in view of
(32) and (35), there exists a constant c > 0 such that
D = {z |U3(z) < c} is positively invariant and δa > 0
and q(t) > 0 for all z ∈ D. Thus, from (35) we have

U̇3 ≤ −C2z
2

2
− C3z

2

3
(42)

in D. Furthermore, only z(t) ≡ 0 stays forever in

S =
{

z ∈ D
∣

∣

∣
U̇3 = 0

}

since ż2 = −a1z1 for z ∈ S.

Therefore, by Corollary 4.1 of Khalil (2002) z = 0 is
asymptotically stable.

The estimate of the region of attraction is obtained
by analyzing U̇3 when δ is saturated as follows. From
the condition q(0) ≥ 0, equation (12), and the fact
that δ(t) ≥ 0 for all t > 0, we have that q(t) ≥ 0 for all
t > 0. So, from (33) we have

U̇3 ≤ −C2z
2

2
+ z3

(

g0z2 −
1

τ
q +

1

τ
δ − α̇q

)

. (43)

Now, let δa < 0. Then, δ = 0,

ż3 = −1

τ
q − α̇q, (44)

and the derivative of U3 satisfies

U̇3 ≤ −C2z
2

2
+ z3

(

g0z2 −
1

τ
q − α̇q

)

. (45)

We will now consider two cases: a) z3 ≤ 0 and b)
z3 > 0.
a) z3 ≤ 0. Since δa < 0, we have from (34), which
is equivalent to (36) but written in the z coordinates,
that

−C3z3 < g0z2 −
1

τ
q − α̇q, (46)

so

z3

(

g0z2 −
1

τ
q − α̇q

)

< −C3z
2

3
. (47)

Thus, we obtain

U̇3 ≤ −C2z
2

2
− C3z

2

3
. (48)

b) z3 > 0. In this case, we have from (45), by inserting
for α̇q and rearranging terms, that

U̇3 ≤ −C2z
2

2
− C2 + h0

4g0

a1(pref − b0)z3

−
(

1

2τ
− (C2 + h0)

)

qz3

−qz3

( 1

2τ
+

C2 + h0

g0

g1z2

)

−C2 + h0

4g0

a1z3

(

4z1 + (pref − b0)
)

−C2 + h0

4g0

z3

(

4h1z
3

2
+ a1(pref − b0)

)

− z3

4g0

(

(C2 + h0)a1(pref − b0)

−4(g2

0
+ C2h0 + h2

0
)z2

)

.

(49)

Using (37), and imposing the conditions

z1 ≥ −1

4
(pref − b0) (50)

z2 ≤ a1(C2 + h0)(pref − b0)

4(g2

0
+ C2h0 + h2

0
)

(51)

z2 ≥ −min







g0

2τg1(C2 + h0)
, 3

√

a1(pref − b0)

4h1







(52)
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we obtain

U̇3 ≤ −C2z
2

2
− C2 + h0

4g0

a1(pref − b0) |z3| . (53)

In view of (42),(48) and (53), LaSalle’s invariance prin-
ciple can be invoked as in the first part of this proof to
establish asymptotic stability of z = 0 and that initial
conditions satisfying (50)–(52) are contained in the re-
gion of attraction of z = 0. Finally, we note that the
conditions (50)–(52), written in terms of (p,w, q), ex-
actly characterize the set A, as given by (38)–(41).

5 Simulation results

In this section we test our proposed backstepping con-
troller on model (1)–(2). For simulation studies, the
following values are selected as “true” parameters for
the system: h0 = 1, h1 = 50, g0 = 0.125, g1 = 5,
a1 = 0.025, b0 = 3.5, τ = 0.1, and the pressure set
point pref = 3.51. The design objective is to stabilize
p at the desired set point pref .
With the proposed backstepping controller, we take the
following set of design parameters: C2 = 0.2 and C3 =
5. The initials are set as p(0) = 3.51, w(0) = q(0) = 0
and u0 = [0.10, 0.90], respectively. Figure 3 illustrates
the backstepping controller applied for stabilization in
the unstable region at reference pressure pref = 3.51.
Figure 4 shows that the system looses stability at
the pressure pref = 3.49, which is below the point
p = b0 = 3.5. The simulation results verify our the-
oretical findings.
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Figure 3: Simulations illustrating stabilization in the
unstable region using backstepping.
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Figure 4: Simulations of an attempt to stabilize at
pref = 3.49, which is below what is physi-
cally feasible.

5.1 PI control

The conventional way to stabilize riser slugging is by
applying a simple control law uPI of the form

uPI = uI − Kp (p − pref ) , (54)

where uI is the bias for a given pressure set-point pref ,
generated by slow integral action according to

u̇I = −Ki

Ti

(p − pref ) . (55)

By linearizing the closed loop dynamics, the Jocabian
matrix is

A =





0 1 0
−a1 h0 − g1qref g0

−Kp

τ
δ′ (uI) 0 − 1

τ



 , (56)

which has the characteristic equation

λ3 +

(

1

τ
− h0 + g1qref

)

λ2

+
1

τ
(τa1 − h0 + g1qref ) λ +

g0

τ
δ′ (uI) Kp +

a1

τ
= 0.

(57)

According to the Hurwitz criterion, it turns out that lo-
cal exponential stability can be achieved by PI control
if

pref > b0 +
h0g0

a1g1

− min

{

g0τ

g1

,
g0

g1τa1

}

(58)
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and Kp is given by

Kp < Kp < K̄p (59)

where

Kp =

(

1

τ
− h0 + g1qref

)

(τa1 − h0 + g1qref ) − a1

δ′ (uI) g0

,

(60)

K̄p =
−a1

g0δ′ (uI)
, (61)

qref =
a1

g0

(pref − b0) . (62)

Here, we have treated uI as constant, corresponding to
the choke opening at the equilibrium (pref , 0, a1(pref −
b0)/g0). The bifurcation point corresponds to

pref = b0 +
h0g0

a1g1

. (63)

Figure 5 illustrates PI controller applied for stabi-
lization in the unstable region at reference pressure
pref = 4.498. Figure 6 shows that the system looses
stability at the pressure pref = 4.45, which is below
the required reference pref > 4.4975. The bifurcation
point corresponds to pbifur = 4.5. The design param-
eters are chosen as Kp = 0.1,Ki = 0.1 and Ti = 25.
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Figure 5: Simulations of PI stabilization at a pressure
in the unstable region pref = 4.498 using PI
controller.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

t [s]

D
o

w
n

h
o

le
 p

re
s
s
u

re
  

p
 [

b
a

rg
]

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

t [s]

C
h

o
k
e

 c
o

n
tr

o
l 
in

p
u

t 
 u

 [
%

]

Figure 6: Simulations of an attempt to stabilize at a
pressure in the unstable region pref = 4.45
using PI controller.

5.2 PD control

Another way to stabilize riser slugging is by applying
a simple control law uPD of the form

uPD = uI + uD − Kp (p − pref ) , (64)

where uI is the bias for a given pressure set-point pref ,
and uD is the derivative action according to

uD = −Kd

d(p − pref )

dt
= −Kdw. (65)

By linearizing the closed loop dynamics, the Jocabian
matrix is

A =





0 1 0
−a1 h0 − g1qref g0

−Kp

τ
δ′ (uI) −Kd

τ
δ′ (uI) − 1

τ



 , (66)

which has the characteristic equation

λ3 +

(

1

τ
− h0 + g1qref

)

λ2 +
(g0

τ
δ′ (uI) Kp +

a1

τ

)

+
1

τ
(τa1 − h0 + g1qref + Kdg0δ

′ (uI))λ = 0. (67)

According to the Hurwitz criterion, it turns out that
local exponential stability can be achieved by PD con-
trol if

pref > b0 +
h0g0

a1g1

−min

{

g0τ

g1

+
g2

0
Kd

g1a1

δ′ (uI) ,
g0

g1τa1

}

,

(68)
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Kd satisfies

Kd <
g0δ

′ (uI) Kp + a1
(

1

τ
− h0 + g1qref

)

g0δ′ (uI)
− τa1 − h0 + g1qref

δ′ (uI) g0

,

(69)
and Kp satisfies

Kp < Kp < K̄p, (70)

where

Kp =

(

1

τ
− h0 + g1qref

)

(τa1 − h0 + g1qref ) − a1

δ′ (uI) g0

+Kd

(

1

τ
− h0 + g1qref

)

, (71)

K̄p =
−a1

g0δ′ (uI)
, (72)

qref =
a1

g0

(pref − b0) . (73)

Figure 7 illustrates PD controller applied for stabiliza-
tion at reference pressure pref = 4.6. The design pa-
rameters are chosen as Kp = 5 and Kd = 5, which
satisfy the stability conditions. Figure 8 shows that
the system looses stability at the pressure pref = 3.51.
The design parameters are chosen as Kp = 0.02 and
Kd = −1.
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Figure 7: Simulations of PD stabilization at a pressure
pref = 4.60 using PD controller.

6 Conclusion

This paper illustrates the potential of nonlinear model-
based control applied for stabilization of unstable flow
in oil wells. A simple empirical model is developed
that describes the qualitative behavior of the down-
hole pressure in case of severe riser slugging. Two con-
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Figure 8: Simulations of an attempt to stabilize at
pref = 3.51 using PD controller.

trol schemes are developed using the integrator back-
stepping approach. The first scheme is an exact can-
celling design because we simply cancel existing dy-
namics including some stabilizing nonlinearities, which
may waste control effort and make the control law com-
plicated. To avoid cancellation of useful nonlinearities,
a better controller is developed, which in addition takes
input saturation into account. It is shown that the
proposed backstepping control scheme can guarantee
asymptotic stability of the closed-loop system with sat-
urated control. The proposed backstepping controller
can stabilize at lower pressure setpoints, correspond-
ing to higher flow rates, than PI and PD controllers.
When the pressure setpoint is low, parameters of the
PD controller that are feasible according to the Hur-
witz criterium, give a very aggressive actuation causing
the choke to saturate repeatedly and stabilization is not
achieved. For the same pressure setpoint, the proposed
backstepping controller is easy to tune. Simulation re-
sults are presented to illustrate the performance of the
proposed control scheme.
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