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Abstract

In this paper, a model of a leader-follower spacecraft formation in six degrees of freedom is derived and presented.
Thenonlinear model describestherelativetranslational and rotational motionof thespacecraft, andextendsprevious
work by providing a more complete factorization, together with detailed information about the matrices in the
model. Theresulting model showsmany similaritieswith modelsfor systemssuch asrobot manipulatorsand marine
vehicles. In addition, mathematical models of orbital perturbations due to gravitational variations, atmospheric
drag, solar radiation and third-body effects are presented for completeness. Results from simulations are presented
to visualize the properties of the model and to show the impact of the different orbital perturbations on the flight
path.
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1 Introduction

1.1 Background

The concept of flying spacecraft in formation is revolution-
izing our way of performing space-based operations, and
this new paradigm brings out several advantages in space
mission accomplishment and extends the possible applica-
tion area for such systems. Spacecraft formation flying is
a technology that includes two or more spacecraft in a con-
trolled spatial configuration, whose operations are closely
synchronized, and Earth and deep spacesurveillancearear-
eas where spacecraft formations can be useful. These ap-
plicationsoften involvedatacollection and processing over
an aperture where the resolution of the observation is in-
versely proportional to the baseline lengths. Further explo-
ration of neighboring galaxiesin spacecan only beachieved
by indirect observation of astronomical objects, and space
based interferometerswith baselinesof up to ten kilometers
havebeen proposed. However, to successfully utilizespace-

craft formations for this purpose, accurate synchronization
of both position and attitude of the cooperating spacecraft
isvital, depending on accuratedynamical system modelsof
the formation.

1.2 Previous work

The simplest model of relative motion between two space-
craft is linear and multi-variable, and known as the Hill
or Clohessy-Wiltshire equations (Hill, 1878; Clohessy and
Wiltshire, 1960). This model originated from the equations
of the two-body problem, based on the laws of Newton
and Kepler, and has inherently assumptions that the orbit
is circular with no orbital perturbations, and that the dis-
tance between spacecraft is small relative to the distance
from the formation to the center of the Earth. An exten-
sion to elliptic Keplerian orbits, yet still assuming no or-
bital perturbations, is what is known as the Lawden equa-
tions (Lawden, 1954) or also Tschauner-Hempel equations
(Tschauner, 1967). Both models were originally presented
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for solutions of the problem of orbital rendezvous, but have
been adopted later for the related and more general space-
craft formation flying control problem. As the visions for
tighter spacecraft formations in highly elliptic orbits ap-
peared, the need for more detailed models arose, especially
regarding orbital perturbations. This resulted in nonlinear
models as presented in e.g. McInnes (1995); Wang and
Hadaegh (1996), and later in Manikonda et al. (1999) and
Yan et al. (2000), derived for arbitrary orbital eccentricity
and with added terms for orbital perturbations.

Alternative approaches for modelling spacecraft forma-
tions are the method of orbit element differences (Schaub
et al., 1999, 2000; Schaub, 2004) and Theona theory (Go-
likov, 2003). The first originates from Lagrange and Gauss
equations, and is based on the idea that each spacecraft in
the formation will have a desired orbit described by a spe-
cific set of orbit parameters. The orbital perturbations will
then cause the orbital parameters for each spacecraft to drift
away from the desired parameters, and this is known as or-
bit element differences. The strength of this method in a
control perspective is that the spacecraft are controlled rela-
tive to their natural orbits, instead of keeping the formation
fixed as in the Newtonian approach. However, control of
orbit element differences requires orbit determination and
global positioning, which can often be computationally de-
manding, and the accuracy needed for close formation fly-
ing is hard to achieve. In Newtonian models, control is only
dependent of relative positions and velocities in the forma-
tion, which can be acquired with high accuracy by means of
optical or radar-based inter-satellite links (ILS).

The numeric-analytic Theona satellite theory is a com-
putationally efficient orbit propagation method used with
success for optimal maneuver and station keeping of space-
craft formations. Similar to orbit element differences, this
approach is based on orbital parameters, but Theona theory
is a mathematical extension that can include more correc-
tions in satellite motion.

Models of both translational and rotational motion in a
leader-follower spacecraft formation have been considered
by few researchers, and most of the previous work has fo-
cused on translational models only. However, notable ex-
ceptions are Wang and Hadaegh (1996); Pan and Kapila
(2001), where coupled models of translation and rotation
were derived. In Naasz et al. (2003), a 6DOF model based
on orbit element differences was derived in order to develop
an integrated control system for attitude and orbit control.
A coordinate-free model of translation and rotation for a
single spacecraft in a formation was presented in several
different forms in Ploen et al. (2004).

1.3 Contribution

This paper is an extension of Kristiansen et al. (2005), and
presents a detailed nonlinear mathematical model in six de-

grees of freedom of relative translational and rotational mo-
tion of two spacecraft in a leader-follower formation, which
is well suited for control. The model of relative position
is based on the two-body equations derived from Newton’s
inverse square law of gravity, and extends previous work
by providing a more complete factorization, together with
detailed information about the matrices in the model. The
position and velocity vectors of the follower spacecraft are
represented in a coordinate reference frame located in the
center of mass of the leader spacecraft, known as the Hill
frame. The relative attitude model is based on Euler’s mo-
mentum equations, and the attitude is represented by unit
quaternions and angular velocities. As the title of the paper
indicates, the presented model is tailored for relative trans-
lational and rotational motion for leader-follower spacecraft
formation. It should however be noted that the model can
also be used to describe the relative translational motion of
general orbits in space.

The model also includes the mathematical expressions
for orbital perturbations originating from gravitationalvari-
ations, atmospheric drag, solar radiation, and perturbations
due to other celestial bodies, known as third body effects.

The rest of the paper is organized as follows: Section 2
describes the reference coordinate frames used in the paper,
and matrices for vector rotation between frames. In Section
3 the model of relative position and velocity is derived, and
the model of relative attitude and angular velocity is derived
in Section 4. The models for relative translation and rota-
tion are summarized into a total nonlinear model in Section
5. Expressions for orbital perturbations are given in Section
6. Simulation results for a spacecraft formation are pre-
sented in Section 7, and concluding remarks can be found
in Section 8.

2 Coordinate frames

2.1 Cartesian coordinate frames

The coordinate reference frames used throughout the paper
are given in Figure 1 and defined as follows:
Earth Centered Inertial (ECI) frame: This frame is de-
notedFi, and has its origin located in the center of the
Earth. Itsz axis is directed along the rotation axis of the
Earth towards the celestial north pole, thex axis is directed
towards the vernal equinox, and finally the direction of the
y axis completes a right handed orthogonal frame.
Leader orbit reference frame: The leader orbit frame, de-
notedFl, has its origin located in the center of mass of the
leader spacecraft. Theer axis in the frame is parallel to
the vectorrl pointing from the center of the Earth to the
spacecraft, and theeh axis is parallel to the orbit momen-
tum vector, which points in the orbit normal direction. The
eθ axis completes the right-handed orthogonal frame. The
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Figure 1: Reference coordinate frames (Schaub and Junk-
ins, 2003).

basis vectors of the frame can be defined as

er =
rl

rl

, eθ = eh × er and eh =
h

h
,

whereh = rl × ṙl is the angular momentum vector of the
orbit, andh = |h|.

In addition to the basis vectors of the frameFl, two aux-
iliary vectorsev anden are defined, as shown in Figure 2.
The first vectorev is pointing along the spacecraft velocity
vector, whileen is defined to be orthogonal toev andeh,
asen = ev × eh. If the spacecraft orbit is circular, then
ev = eθ anden = er. The auxiliary vector frame is used
when incorporating models for atmospheric drag, which has
a resultant force in the−ev direction.
Follower orbit reference frame: This frame has its ori-
gin in the center of mass of the follower spacecraft, and
is denotedFf . The vector pointing from the center of the
Earth to the center of the follower orbit frame is denoted
rf . Its origin is specified by a relative orbit position vector
p = [x y z]

T expressed inFl frame components, as shown
in Figure 1, and the frame unit vectors align with the basis
vectors ofFl. Accordingly,

p = rf − rl = xer + yeθ + zeh . (1)

Body reference frames: For both the leader and the fol-
lower spacecraft, body reference frames are defined and de-
notedFbl andFbf , respectively. These frames have, similar
to the orbit frame, the origin located in the center of mass
of the respective spacecraft, but the basis vectors are fixed
in the spacecraft body and coincide with its principal axis
of inertia.

er

eθ

en

ev

ν

Elliptic orbit

Figure 2: Auxiliary vectors for the leader orbit reference
frame (Schaub and Junkins, 2003).

2.2 Coordinate frame transformations

2.2.1 Rotation from ECI to leader orbit frame

The rotation from the ECI frame to the leader orbit frame is
dependent on the parameters of the leader spacecraft orbit,
and can be expressed by three consecutive rotations. The
total rotation matrix can be written

Rl
i = Rz,ω+νRx,iRz,Ω

whereΩ is the right ascension of the ascending node of the
orbit, i is the inclination of the orbit,ν is the true anomaly
of the leader orbit, andω is the argument of perigee of the
same. The sum ofν andω represents the location of the
spacecraft relative to the ascending node.

2.2.2 Orbit frame transformation

Using both the original and the auxiliary vectors in the orbit
frame, as shown in Figure 2, spacecraft acceleration can be
written as

a = arer + aθeθ + aheh = anen + avev + aheh . (2)

The spacecraft velocity vector can be expressed according
to Schaub and Junkins (2003) as

vs = ṙ =
µ

h

(

e sin νer +
p

r
eθ

)

whereµ is the geocentric gravitational constant of the Earth,
h is the magnitude of angular momentum,e is the eccentric-
ity andp = h2/µ is the semi-latus rectum of the spacecraft
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orbit. Therefore, sinceev is pointing along the velocity vec-
tor,

ev =
vs

|vs|
=

h

pv

(

e sin νer +
p

r
eθ

)

. (3)

Moreover, sinceen is defined normal toev andeh,

en = ev × eh =
h

pv

(p

r
er − e sin νeθ

)

. (4)

The coordinate transformation between the orbit plane ac-
celeration vector components can now be found from (2)-
(4) as

[

ar

aθ

]

=
h

pv

[

p
r

e sin ν
−e sin ν p

r

] [

an

av

]

so that

Cl
a =

h

pv





p
r

e sin ν 0
−e sin ν p

r
0

0 0 pv
h



 . (5)

Note thatCl
a is not in general a proper rotation matrix since

det Cl
a = 1 + e2 + 2e cos ν .

2.2.3 Body frame rotation

The rotation matrix describing rotations from an orbit frame
to a body frame can be described by

Rb
o = [c1 c2 c3] = I+2ηS (ε) + 2S2 (ε) (6)

where the elementsci are directional cosines, and

q =
[

η εT
]T

(7)

are the Euler parameters. The matrixS (·) is the cross prod-
uct operator given by

S (ε) = ε× =





0 −εz εy

εz 0 −εx

−εy εx 0



 (8)

whenε = [εx εy εz]
T . The inverse rotation is given by the

complex conjugate ofq as

q̄ =
[

η −εT
]T

.

3 Relative translation

3.1 The N-body problem

Consider a system ofN bodies with massesmi, wherei =
1, 2, ..., N . The position and velocity vectors of thei’th
mass relative to the ECI frameFi are defined asri andvi

respectively, whereri = xiix + yiiy + ziiz andvi = dri

dt
.

The distance between any two particles with massmi and
mj is denoted by

rij = |rj − ri|

and the magnitude of the force of attraction between the
masses isGmimj/r2

ij whereG is the universal constant
of gravity (Battin, 1999). The direction of the forces are
expressed in terms of unit vectors, and the force acting on
mi due tomj has the direction(rj − ri) /rij , while the
force onmj due tomi has the opposite direction. The force
fi acting on massmi due to all the otherN − 1 masses can
be expressed as

fi = G

n
∑

j=1

mimj

r3
ij

(rj − ri), i, j = 1, 2, ..., N, i 6= j

and application of Newton’s second law of motion yieldsN
vector differential equations

d2ri

dt2
= G

n
∑

j=1

mj

r3
ij

(rj − ri), i 6= j . (9)

Together with appropriate initial conditions, this constitutes
a complete mathematical description of the motion of a sys-
tem ofN bodies. From this relation, the fundamental dif-
ferential equation of the two-body problem can be found as
(cf. Battin (1999))

d2r

dt2
+

µ

r3
r = 0 (10)

wherer = r2 − r1 is the relative position of masses and
µ = G (m1 + m2).

3.2 Formation dynamics

The general orbit equation (10) is the equation describing
the orbit dynamics for a spacecraft under ideal conditions,
i.e. with no orbital perturbations. This equation can be gen-
eralized to include force terms due to aerodynamic distur-
bances, gravitational forces from other bodies, solar radia-
tion, magnetic fields and so on. In addition, it can be aug-
mented to include control input vectors from onboard actu-
ators. Accordingly, (10) can be expressed for the leader and
follower spacecraft as

r̈l = −
µ

r3
l

rl +
fdl

ml

+
fal

ml

r̈f = −
µ

r3
f

rf +
fdf

mf

+
faf

mf

where fdl, fdf ∈ R
3 are the orbital perturbation terms

due to external effects andfal, faf ∈ R
3 are the actuator

forces of the leader and follower spacecraft, respectively. In
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addition, spacecraft masses are assumed to be small relative
to the mass of the EarthMe, so µ = GMe. The second
order derivative of the relative position vector can now be
expressed as

p̈ = r̈f − r̈l

= −
µ

r3
f

rf +
fdf

mf

+
faf

mf

+
µ

r3
l

rl −
fdl

ml

−
fal

ml

so that

mf p̈ = −mfµ

(

rl + p

(rl + p)
3
−

rl

r3
l

)

+ faf + fdf −
mf

ml

(fal + fdl) . (11)

On the other hand, from (1), the dynamics of the follower
spacecraft relative to the leader spacecraft, referenced in the
leader orbit frameFl, can be expressed as

rf = rl + p = (rl + x) er + yeθ + zeh .

Differentiation of this equation twice with respect to time
leaves

r̈f =(r̈l + ẍ) er + 2 (ṙl + ẋ) ėr + (rl + x) ër

+ ÿeθ + 2ẏėθ + yëθ + z̈eh + 2żėh + zëh . (12)

By using the true anomalyν of the leader spacecraft, the
relationships

ėr = ν̇eθ ėθ = −ν̇er (13)

ër = ν̈eθ − ν̇2er ëθ = −ν̈er − ν̇2eθ (14)

can be found. Insertion of (13)-(14) into (12), while recog-
nizing that no out-of-plane motion exists in the ideal case,
and hencėeh = ëh = 0, gives

r̈f =
(

r̈l + ẍ − 2ẏν̇ − ν̇2 (rl + x) − yν̈
)

er (15)

+
(

ÿ + 2ν̇ (ṙl + ẋ) + ν̈ (rl + x) − yν̇2
)

eθ + z̈eh .

Moreover, the position of the leader spacecraft can be ex-
pressed asrl = rler, and differentiating this expression
twice with respect to time and inserting (13)-(14), resultsin

r̈l = r̈ler + 2ṙlėr + rlër

=
(

r̈l − rlν̇
2
)

er + (2ṙlν̇ + rlν̈) eθ . (16)

Subtracting (16) from (15) results thus in the formulation of
the position vector acceleration represented in theFl frame;

p̈ = r̈f − r̈l

=
(

ẍ − 2ν̇ẏ − ν̇2x − ν̈y
)

er

+
(

ÿ + 2ν̇ẋ + ν̈x − ν̇2y
)

eθ + z̈eh . (17)

Substituting (17) into (11), and denoting relative velocity as
v = ṗ, leaves the nonlinear position dynamics on the form

mf v̇ + Ct (ν̇)v + Dt (ν̇, ν̈, rf )p

+ nt (rl, rf ) = Fa + Fd (18)

similar to the one derived in Yan et al. (2000), where

Ct (ν̇) = 2mf ν̇





0 −1 0
1 0 0
0 0 0



 ∈ SS (3)

is a skew-symmetric Coriolis-like matrix,

Dt (ν̇, ν̈, rf )p = mf







µ

r3

f

− ν̇2 −ν̈ 0

ν̈ µ

r3

f

− ν̇2 0

0 0 µ

r3

f






p (19)

may be viewed as a time-varying potential force, and

nt (rl, rf ) = mfµ





rl

r3

f

− 1

r2

l

0
0



 .

The composite perturbation forceFd is given by

Fd = fdf −
mf

ml

fdl

and the relative control forceFa is given by

Fa = faf −
mf

ml

fal .

The eigenvalues of the matrixDt (ν̇, ν̈, rf ) in (19) are

λ =

{

µ

r3
f

+ ν̈ − ν̇2 µ

r3
f

− ν̈ − ν̇2 µ

r3
f

}

so it can be shown thatDt (ν̇, ν̈, rf ) > 0 when

r3
f <

a3
(

1 − e2
)3

(1 + e cos ν)
4

(20)

wherea is the semimajor axis of the leader orbit. If the or-
bit of the leader spacecraft is circular, thene = 0 and (20)
reduces torf < a, soDt (ν̇, ν̈, rf ) > 0 when the follower
is located within the circle with origin in the center of the
Earth and radiusa. At the other end, when the leader or-
bit tends towards an parabolic orbit, thene → 1 and (20)
reduces torf < 0, which is practically infeasible. For
control purposes, it is desirable to haveDt (ν̇, ν̈, rf ) ≤ 0,
as this would constitute a ”tether-like” connection between
the leader and the follower. However, forcing the follower
spacecraft to satisfy such a constraint will lead to unnatu-
ral orbital behavior for the follower and hence increase the
consumption of power.
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4 Relative rotation

4.1 Attitude kinematics

The time derivative of a matrixRa
b as in (6) can according

to Egeland and Gravdahl (2002) be written as

Ṙa
b = S

(

ωa
a,b

)

Ra
b = Ra

bS
(

ωb
a,b

)

(21)

whereωb
a,b is the angular velocity of frameb relative to

framea represented in frameb andS (·) is the cross product
operator described in (8). The kinematic differential equa-
tions for a spacecraft in its orbit frame can be found from
(21) together with (7) as

q̇s =

[

η̇s

ε̇s

]

=
1

2

[

−εT
s

ηsI + S (εs)

]

ωsb
s,sb (22)

whereωsb
s,sb is the angular velocity of the spacecraft body

frame relative to the orbit frame, referenced in the body
frame. The superscript/subscripts is used in general to de-
note the spacecraft in question, sos = l, f for the leader
and follower spacecraft, respectively.

4.2 Attitude dynamics

With the assumptions of rigid body movement, the dynam-
ical model of a spacecraft can be found from Euler’s mo-
mentum equation as (cf. Sidi (1997))

Jsω̇
sb
i,sb = − S

(

ωsb
i,sb

)

Jsω
sb
i,sb + τ sb

ds + τ sb
as (23)

ωsb
s,sb =ωsb

i,sb + ωoc2 (24)

whereJs is the spacecraft inertia matrix andωsb
i,sb is the an-

gular velocity of the spacecraft body frame relative to the
inertial frame, expressed in the body frame. The parame-
ter ωo is the orbit angular velocity,τ sb

d is the orbital per-
turbation torque,τ sb

a is the actuator torque, andc2 is the
directional cosine vector from (6).

4.3 Relative attitude

By expressing the relations in (22) and (23)-(24) for both
the leader and the follower spacecraft, and using the quater-
nion product defined in Egeland and Gravdahl (2002) as

q = qf ⊗ q̄l ,

[

ηfηl + εT
f εl

ηlεf − ηfεl − S (εf ) εl

]

the relative attitude kinematics and dynamics can be ex-
pressed as (cf. Fjellstad (1994))

q̇ =

[

η̇
ε̇

]

=
1

2

[

−εT

ηI + S (ε)

]

ω

where

ω = ω
fb
i,fb − R

fb
lb ωlb

i,lb (25)

is the relative angular velocity between the leader body ref-
erence frame and the follower body reference frame. More-
over, from (25) the relative attitude dynamics can be ex-
pressed as

Jf ω̇ =Jf ω̇
fb
i,fb − JfṘ

fb
lb ωlb

i,lb − JfR
fb
lb ω̇lb

i,lb

=Jf ω̇
fb
i,fb − JfS

(

ω
fb
i,lb

)

ω − JfR
fb
lb ω̇lb

i,lb (26)

where (21) and the facts thatω
fb
lb,fb = ω andS (a)b =

−S (b)a have been used. Insertion of (23), evaluated for
both the leader and follower, into (26) results in

Jf ω̇ + JfS
(

R
fb
lb ωlb

i,lb

)

ω − JfR
fb
lb J−1

l S
(

ωlb
i,lb

)

Jlω
lb
i,lb

+ S
(

ω+R
fb
lb ωlb

i,lb

)

Jf

(

ω+R
fb
lb ωlb

i,lb

)

=Υd+Υa (27)

where

Υd = τ
fb
df − JfR

fb
lb J−1

l τ lb
dl

and

Υa = τ
fb
af − JfR

fb
lb J−1

l τ lb
al

are the relative orbital perturbation torques and relativeac-
tuator torques, respectively. The third term in (27), denoted
ξ (ω), can be rewritten as

S
(

ω + R
fb
lb ωlb

i,lb

)

Jf

(

ω + R
fb
lb ωlb

i,lb

)

=S (ω)Jf

(

ω + R
fb
lb ωlb

i,lb

)

+ S
(

R
fb
lb ωlb

i,lb

)

Jf

(

ω + R
fb
lb ωlb

i,lb

)

= − S
(

Jf

(

ω + R
fb
lb ωlb

i,lb

))

ω

+ S
(

R
fb
lb ωlb

i,lb

)

Jf

(

ω + R
fb
lb ωlb

i,lb

)

=
(

−S
(

Jf

(

ω + R
fb
lb ωlb

i,lb

))

+ S
(

R
fb
lb ωlb

i,lb

)

Jf

)

ω

+ S
(

R
fb
lb ωlb

i,lb

)

JfR
fb
lb ωlb

i,lb

and accordingly, (27) can be written as

Jf ω̇ + Cr (ω) ω + nr (ω) = Υd + Υa (28)

where

Cr (ω) = JfS
(

R
fb
lb ωlb

i,lb

)

+S
(

R
fb
lb ωlb

i,lb

)

Jf (29)

− S
(

Jf

(

ω + R
fb
lb ωlb

i,lb

))

is a skew-symmetric matrix,Cr (ω) ∈ SS (3), and

nr (ω) = S
(

R
fb
lb ωlb

i,lb

)

JfR
fb
lb ωlb

i,lb

− JfR
fb
lb J−1

l S
(

ωlb
i,lb

)

Jlω
lb
i,lb

8
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is a nonlinear term. The skew-symmetry ofCr (ω) can be
shown as follows: The sum of the first and last term in (29)
is skew-symmetric, sinceJf = JT

f andS (·) = −ST (·), so

JfS (·) + S (·)Jf + [JfS (·) + S (·)Jf ]
T

= 0 .

Moreover, the second term in (29) is itself skew-symmetric,
and the sum of two skew-symmetric matrices is also skew-
symmetric. Accordingly,Cr (ω) will be skew-symmetric.

5 Total model

To write the total 6DOF model of relative translation and
rotation in the spacecraft formation, define the state vectors

x1 = [p q]
T

and x2 = [v ω]
T

.

Based on (18) and (28), the total model of the relative trans-
lational and rotational motion between the leader and the
follower spacecraft can now be expressed

ẋ1 = Λ (x1)x2 (30)

Mf ẋ2 = U + W − C (ν̇,ω)x2

− D (ν̇, ν̈, rf )x1 − n (ω, rl, rf ) (31)

where

Mf =

[

mfI 0

0 Jf

]

is a symmetric positive definite matrix containing the mass
and moments of inertia of the follower spacecraft,

Λ (x1) =





I 0

0 1

2

[

−εT

ηI + S (ε)

]





is the coupling term between the first and second order dy-
namics,

C (ν̇,ω) =

[

Ct (ν̇) 0

0 Cr (ω)

]

∈ SS (6)

is the skew-symmetric Coriolis-like matrix,

D (ν̇, ν̈, rf )x1 =

[

Dt (ν̇, ν̈, rf ) 0

0 0

]

x1

is the time-varying potential force term,

n (ω, rl, rf ) =

[

nt (rl, rf )
nr (ω)

]

is the composite nonlinear term, and finally

U =

[

Fa

Υa

]

and W =

[

Fd

Υd

]

contains the relative input forces and orbital perturbations,
respectively. It should be noted that when orbital pertur-
bations and actuator torque is neglected, the relative rota-
tional and translational motion of the leader spacecraft and
the follower spacecraft is uncoupled. Equation (31) can
be interpreted as a ”mass-damper-spring” system with an
added nonlinear term, and the model has many similarities
with models of systems such as robot manipulators, and sur-
face and underwater ships (cf. Ortega et al. (1998); Fossen
(2002)). This is convenient since automatic control theory
for these types of systems is highly developed, and this sim-
plifies the task of controller design.

6 Orbital perturbations

Spacecraft flying in a Keplerian orbit will be subject to ac-
celerations caused by orbital perturbation forces. The main
sources for these forces are gravitational attractions from
celestial bodies, non-spherical planets, atmospheric drag, or
solar radiation pressure (Schaub and Junkins, 2003). The
resulting expressions for these perturbations are in the fol-
lowing presented generally for a spacecraft in Earth orbit,
without relating to leader or follower spacecraft. The su-
perscripts is used for generality to indicate the orbit frame
for the inflicted spacecraft.

6.1 Perturbing forces

6.1.1 Atmospheric drag

At altitudes lower than approximately500 km, Earth atmo-
sphere is so dense that the resulting aerodynamic drag has
a considerable impact on spacecraft orbits (Wertz, 1978).
The aerodynamic force can be written as

fs
atm = Cs

a





0
1

2
ρV 2CdA

0



 (32)

whereρ is the atmospheric density,V is the spacecraft ve-
locity, Cd is the drag coefficient,A is the equivalent space-
craft surface in the direction of motion of the spacecraft and
Cs

a denotes the orbit frame transformation matrix, as de-
scribed in (5).

6.1.2 Solar radiation

Radiation and particles expelled from the Sun will affect
the spacecraft orbit independent of the spacecraft altitude
(Wertz, 1978). The orbital perturbation force from solar
radiation is dependent on the reflectance of the spacecraft
material, and consists of absorption, specular reflection and
diffuse reflection. The surfaces of a spacecraft is usually
non-diffuse, and the reflection is a combination of absorp-
tion and specular reflection. The diffuse reflection is hence

9
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neglected in the further analysis. A visualization of result-
ing forces on a surfaceA due to absorption and specular
reflection is shown in Figure 3. The normal vectorn in the

A

n

esun

isun Frefl

Fabs

Figure 3: Orbital perturbation forces due to solar radiation
pressure for absorbing and reflecting surfaces.

figure gives the orientation of the surfaceA, and it is in-
clined an angleisun to the vectoresun which points in the
direction of the Sun. For an absorbing surface, the impulse
transferred is in the opposite direction asesun. For a re-
flecting surface on the other hand, the impulse transferred
is not generally in the opposite direction asesun, and the
impulse is also twice as large, due to the reflective rays. For
a body that reflects a fractionγ of the incoming radiation,
while it absorbs the remaining fraction of energy(1 − γ),
the total combined force is given as

fs
sun =

Fsun

c
cos isunA [(γ−1) esun−2γcos isunn] (33)

whereFsun = 1367 W/m2 is the solar constant andc is
the speed of light.

6.1.3 The mass distribution of the Earth

If the Earth was a single point mass, the gravitational po-
tential due to the conservative gravitational force could be
derived from a gradient or scalar potential functionU (r) =
−µ/r. However, the Earth is not a single point mass, but
an oblate body with a nonhomogeneous mass distribution.
Therefore, correction factors must be added based on the
geographical position of the spacecraft, and the corrected
potential of the Earth can be expressed according to Wertz
(1978) as

U (r, φ, λ) = −µ/r + B (r, φ, λ)

whereB (r, φ, λ) is a spherical harmonic expansion,φ is the
geocentric latitude andλ is the geographical longitude of
the spacecraft position. DenotingRe as the mean equatorial
radius of the Earth, the expansion can be expressed as

B (r, φ, λ) =
µ

r

{

∞
∑

n=2

[

H1,n +
n
∑

m=1

H2,n

]}

(34)

where

H1,n =

(

Re

r

)n

JnPn (sinφ)

H2,n =

(

Re

r

)n

(Cnm cos mλ + Snm sinmλ) Pnm (sinφ)

which is the infinite series of the geopotential function at
any pointP outside of the Earth sphere wherer, φ and
λ are its spherical coordinates (Sidi, 1997). The parame-
tersJn are zonal harmonic coefficients,Pnm are Legendre
polynomials of degreen and orderm, Pn = Pn0, andCnm

andSnm are tesseral harmonic coefficients forn 6= m and
sectoral harmonic coefficients forn = m (Wertz, 1978).
Specifically, it should be noted thatJn ≡ Cn0. The asso-
ciated Legendre polynomialPnm is defined as (cf. Mon-
tenbruck and Gill (2001))

Pnm (u) =
(

1 − u2
)

m
2

dm

dum
Pn (u) .

It is seen from equation (34) that zonal harmonics depend
only on latitude, not on longitude, and these coefficients are
due to the oblateness of the Earth. The tesseral harmonics
in (34) represents longitudinal variations in the Earth shape,
and are generally smaller than zonal terms. A set of values
for theJn constants are given in Table 1. If the assumption

Table 1: Zonal harmonic coefficients (Roy, 2005)

n Jn

2 1082.6 · 10−6

3 −2.51 · 10−6

4 −1.60 · 10−6

of axial symmetry of the Earth is introduced, only zonal
harmonics is needed. In addition, from Table 1 of zonal har-
monics coefficients, it is seen thatJ2 is considerably larger
than the otherJn coefficients. IfJ2 is the only zonal har-
monic considered, the gravitational potential function can
be approximated according to Montenbruck and Gill (2001)
as

U (r, φ, λ) =
µ

r

[

−1 +
1

2
J2

(

Re

r

)2
(

3 sin2 φ − 1
)

]

.

In the inertial reference frame,

sinφ =
rz

|r|
=

rz
√

r2
x + r2

y + r2
z

wherer is the vector pointing from the center of the Earth
to the spacecraft. The gravitational forceG acting on the
spacecraft is obtained from the gradient of the scalar poten-

10
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tial as

G = µ











− rx

r3 + 1

2
J2R

2
e

(

15
rxr2

z

r7 − 3 rx

r5

)

−
ry

r3 + 1

2
J2R

2
e

(

15
ryr2

z

r7 − 3
ry

r5

)

− rz

r3 + 1

2
J2R

2
e

(

15
r3

z

r7 − 9 rz

r5

)











(35)

and theJ2 gravity perturbation forcef b
grav for the Earth is

the latter terms in (35),i.e.

fs
grav =

3

2
µJ2R

2
eR

s
i







5
rxr2

z

r7 − rx

r5

5
ryr2

z

r7 −
ry

r5

5
r3

z

r7 − 3 rz

r5






. (36)

6.1.4 Third-body perturbing forces

The gravitational potential of other bodies in the vicinityof
the spacecraft can create perturbing forces and torques. For
an Earth-orbiting spacecraft, the Sun and the Moon causes
perturbing forces that can change the orbit parameters con-
siderably. The Keplerian orbit models are derived from the
two-body problem equation in (10), after a simplification of
the general equation (9) due to the assumption the space-
craft and the orbited planet are the only elements present. If
an extraction of the masses of the spacecraft and the Earth is
performed on (9), the resulting accelerations are (cf. Battin
(1999))

d2r1

dt2
= G

m2

r3
12

(r2 − r1) + G

n
∑

j=3

mj

r3
1j

(rj − r1) (37)

d2r2

dt2
= G

m1

r3
21

(r1 − r2) + G

n
∑

j=3

mj

r3
2j

(rj − r2) . (38)

Subtraction of (37) from (38) results in the equation for the
two-body problem in (10) with an additional perturbing ac-
celeration due to then − 2 perturbing bodies,

d2r

dt2
+

µ

r3
r = G

n
∑

j=3

mj

(

r2j

r3
2j

−
r1j

r3
1j

)

where, as before,r = r2 − r1 is the relative position of the
two primary masses, andr1j = rj − r1 andr2j = rj − r2.
Hence, the perturbing acceleration is

fs
nbody = Rs

i

n
∑

j=3

µpj

(

r2j

r3
2j

−
r1j

r3
1j

)

(39)

whereµpj = Gmj is the gravity constant for thej’th per-
turbing body.

6.2 Perturbing torques

The resulting torqueτ s
j on a spacecraft due to a perturbing

force fs
j can be found from the relation (cf. Egeland and

Gravdahl (2002))

τ s
j = rs

c × fs
j (40)

wherers
c is the vector from the spacecraft center of mass

to the line of action of the force. Hence, perturbing torques
due to atmospheric drag, solar radiation, gravity variations
and third body effects can be found by combining (40) with
(32), (33), (36) and (39), respectively.

6.3 Dynamical effect of perturbations

The dynamical effect of orbital perturbations on the space-
craft in the formation is a coupling of the rotational and
translational motion of the follower spacecraft. Perturbing
forces working on the follower are dependent on its posi-
tion, and especially its altitude. The resulting torques due
to these perturbing forces, which cause rotational motion of
the spacecraft, will thus also depend on the position. Ac-
cordingly, the rotational motion is affected by the transla-
tional motion. Similar, the effect of perturbing forces due
to atmospheric drag and solar radiation on the translational
motion is dependent on the orientation of the spacecraft,
varying with the size of the equivalent surface area in the
force direction. Therefore, the translational motion of the
follower spacecraft is affected by the rotational motion of
the spacecraft. The result of orbital perturbations is thusa
two way coupling in the model presented in (31). Also, use
of non-conservative actuators as thrusters, magnetic rods
and solar sails will in some actuator configurations cause
both rotational and translational spacecraft motion.

7 Simulations

To illustrate the impact of the perturbing forces and torques,
simulation results for two spacecraft in a leader-follower
formation are presented. It should be noted that only the ef-
fects of the gravity force and atmospheric drag are included
in the simulations. The reason for this is that solar radiation
and the third-body effects are dependent on the location of
the Sun and other celestial bodies. The effect of these per-
turbations will therefore vary, depending on the orbit pa-
rameters and time of the year.

For simplicity of simulation, both spacecraft have a to-
tal mass ofm = 1 kg and their moments of inertia are
J = diag ([0.06, 0.06, 0.003]) kgm2. The leader space-
craft is assumed perfectly controlled in a circular orbit with
inclination22.5◦ and altitude250 km, and with a constant
attitude relative to the ECI frame. The follower spacecraftis
located10 m behind the leader in the along-track direction,
with the same initial orbit velocity and attitude. The simu-
lations were performed using a Runge-Kutta ODE solver.

The position and velocity of the follower relative to the
leader are shown in Figure 4. Similarly, the relative attitude
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Figure 4: Relative position and velocity between leader and
follower spacecraft.

and angular velocity are presented in Figure 5. If no orbital
perturbations were present, the relative position and attitude
would be constant. Hence, the perturbing forces and torques
can be seen from the figures to have a large impact on the
system states. From the results presented in Figure 4, it
can be seen that the perturbing forces causes oscillations in
relative position. This is due to the gravity force working
on the follower. The force pulls the spacecraft towards the
Earth. However, as the follower moves below the leader,
it has an orbital velocity corresponding to a higher orbit,
and accordingly, the altitude increases. When it reaches the
same altitude as the leader orbit, it is again drawn down
towards the Earth, and the cycle repeats. Similar, the oscil-
lations in the cross-track direction is due to gravity. Since
the Earth is not a single point of mass, the follower will be
drawn to the side with the largest gravitational pull. How-
ever, the main gravitational component will be towards the
center of the Earth, so as the spacecraft moves to one side
in cross-track direction, the gravitational force component
in the opposite direction will pull it back again, and the in-
creased cross-track velocity will move it over to the other
side. As with the altitude, this is also a cyclic behavior,
however, the cross-track motion seems to be more unsta-
ble. The along-track distance between the spacecraft was
however not oscillating, but constantly decaying. The main
cause of this is probably the atmospheric drag, which has
considerable effect at altitudes below500 km. Hence, the
along-track velocity of the follower is reduced. Also, os-
cillations in other directions cause the spacecraft to havea
longer flight path, and thus it lags behind.

The relative attitude was also seen to oscillate. All three
body axes were influenced by the perturbations, they had
the largest effect on theeθ axis. This is due to the gravity
force, which constantly tries to turn the follower towards
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Figure 5: Relative attitude and angular velocity between
leader and follower spacecraft.

the Earth, in accordance with the principle axis of inertia.
In addition, gravity perturbations originating from oblate-
ness of the Earth results in non-smooth attitude changes, as
shown in the simulation results.

Regarding the perturbations due to solar radiation and
third-body effects, these are not included in the simulations.
It is however possible to get a notion of the impact of these
perturbations. Since the orbital time is short, the location of
other celestial bodies like the Sun and the Moon can be con-
sidered constant over one orbit period. If these bodies are
located in the orbital plane, they will result in a change in
orbit eccentricity for the follower. The perturbing force due
to solar radiation will decelerate the follower as it moves
towards the Sun, and accelerate it as it moves away from
the Sun. If the Sun is located out of the orbit plane, the fol-
lower will experience a constant force away from the Sun.
The third-body effects have the opposite effect on the fol-
lower compared to the solar radiation, and accordingly, the
spacecraft will experience a gravitational pull towards other
celestial bodies.

8 Conclusion

In this paper, a nonlinear mathematical model of a leader-
follower spacecraft formation in six degrees of freedom has
been derived and presented. The model describes the rel-
ative translational and rotational motions of the spacecraft,
and extends previous work by providing a more complete
factorization, together with detailed information about the
matrices in the model. The resulting model shows many
similarities with models for systems such as robot manipu-
lators and marine vehicles. Moreover, mathematical models
of orbital perturbations due to gravitational variations,at-
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mospheric drag, solar radiation and third-body effects have
been included for completeness. Results from simulations
of a leader-follower spacecraft formation have been pre-
sented to illustrate the effect of the orbital perturbations.
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