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Abstract

In this paper, amodel of aleader-follower spacecraft formation in six degrees of freedom is derived and presented.
Thenonlinear model describestherelative trandational and rotational motion of the spacecraft, and extends previous
work by providing a more complete factorization, together with detailed information about the matrices in the
model. The resulting model shows many similaritieswith modelsfor systems such as robot manipulators and marine
vehicles. In addition, mathematical models of orbital perturbations due to gravitational variations, atmospheric
drag, solar radiation and third-body effects are presented for completeness. Results from simulations are presented
to visualize the properties of the model and to show the impact of the different orbital perturbations on the flight

path.
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1 Introduction

1.1 Background

The concept of flying spacecraft in formation is revol ution-
izing our way of performing space-based operations, and
this new paradigm brings out several advantages in space
mission accomplishment and extends the possible applica-
tion area for such systems. Spacecraft formation flying is
atechnology that includes two or more spacecraft in a con-
trolled spatial configuration, whose operations are closely
synchronized, and Earth and deep space surveillance are ar-
eas where spacecraft formations can be useful. These ap-
plications often involve data collection and processing over
an aperture where the resolution of the observation is in-
versely proportional to the baseline lengths. Further explo-
ration of neighboring galaxiesin space can only be achieved
by indirect observation of astronomical objects, and space
based interferometers with baselines of up to ten kilometers
have been proposed. However, to successfully utilize space-
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craft formations for this purpose, accurate synchronization
of both position and attitude of the cooperating spacecraft
isvital, depending on accurate dynamical system models of
the formation.

1.2 Previous work

The simplest model of relative motion between two space-
craft is linear and multi-variable, and known as the Hill
or Clohessy-Wiltshire equations (Hill, 1878; Clohessy and
Wiltshire, 1960). This model originated from the equations
of the two-body problem, based on the laws of Newton
and Kepler, and has inherently assumptions that the orbit
is circular with no orbital perturbations, and that the dis-
tance between spacecraft is small relative to the distance
from the formation to the center of the Earth. An exten-
sion to elliptic Keplerian orbits, yet till assuming no or-
bital perturbations, is what is known as the Lawden equa-
tions (Lawden, 1954) or also Tschauner-Hempel equations
(Tschauner, 1967). Both models were originally presented
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for solutions of the problem of orbital rendezvous, but hageees of freedom of relative translational and rotationa m
been adopted later for the related and more general spdioa of two spacecraft in a leader-follower formation, whic
craft formation flying control problem. As the visions fois well suited for control. The model of relative position
tighter spacecraft formations in highly elliptic orbits-apis based on the two-body equations derived from Newton'’s
peared, the need for more detailed models arose, especiailgrse square law of gravity, and extends previous work
regarding orbital perturbations. This resulted in nordineby providing a more complete factorization, together with
models as presented in e.g. Mclnnes (1995); Wang atetailed information about the matrices in the model. The
Hadaegh (1996), and later in Manikonda et al. (1999) apdsition and velocity vectors of the follower spacecraé ar
Yan et al. (2000), derived for arbitrary orbital eccentsici represented in a coordinate reference frame located in the
and with added terms for orbital perturbations. center of mass of the leader spacecraft, known as the Hill

Alternative approaches for modelling spacecraft formtiame. The relative attitude model is based on Euler’s mo-
tions are the method of orbit element differences (Schamigntum equations, and the attitude is represented by unit
et al., 1999, 2000; Schaub, 2004) and Theona theory (Goaternions and angular velocities. As the title of the pape
likov, 2003). The first originates from Lagrange and Gauglicates, the presented model is tailored for relativesra
equations, and is based on the idea that each spacecrdftianal and rotational motion for leader-follower spaedt
the formation will have a desired orbit described by a spi@rmation. It should however be noted that the model can
cific set of orbit parameters. The orbital perturbationd wilso be used to describe the relative translational motion o
then cause the orbital parameters for each spacecraftto @¢neral orbits in space.
away from the desired parameters, and this is known as orThe model also includes the mathematical expressions
bit element differences. The strength of this method infer orbital perturbations originating from gravitationeri-
control perspective is that the spacecraft are contro#iéd r ations, atmospheric drag, solar radiation, and pertwbati
tive to their natural orbits, instead of keeping the formiati due to other celestial bodies, known as third body effects.
fixed as in the Newtonian approach. However, control of The rest of the paper is organized as follows: Section 2
orbit element differences requires orbit determinatiod adescribes the reference coordinate frames used in the, paper
global positioning, which can often be computationally dend matrices for vector rotation between frames. In Section
manding, and the accuracy needed for close formation fiythe model of relative position and velocity is derived, and
ing is hard to achieve. In Newtonian models, control is onfite model of relative attitude and angular velocity is dedliv
dependent of relative positions and velocities in the formia Section 4. The models for relative translation and rota-
tion, which can be acquired with high accuracy by meanstdn are summarized into a total nonlinear model in Section
optical or radar-based inter-satellite links (ILS). 5. Expressions for orbital perturbations are given in ®ecti

The numeric-analytic Theona satellite theory is a cor8: Simulation results for a spacecraft formation are pre-
putationally efficient orbit propagation method used witkented in Section 7, and concluding remarks can be found
success for optimal maneuver and station keeping of spageSection 8.
craft formations. Similar to orbit element differencedsth
approach is based on orbital parameters, but Theona theory
i§ a mathemgtical e_xtension that can include more correg- coordinate frames
tions in satellite motion.

Models of both translational and rotational motion in . .
leader-follower spacecraft formation have been constﬂe%l Cartesian coordinate frames

by few researchers, and most of the previous work has fI‘f‘ie coordinate reference frames used throughout the paper
cused on translational models only. However, notable e given in Figure 1 and defined as follows:

ceptions are Wang and Hadaegh (1996); Pan and Karﬂléirth Centered Inertial (ECI) frame: This frame is de-

(2001), where coupled models of translation and rotatur)]la ed 7, and has its origin located in the center of the

were d_enved. In Naasz etal (2003).’ a 6.DOF model basEarth. Itsz axis is directed along the rotation axis of the
on orbit element differences was derived in order to develegrth towards the celestial north pole, thaxis is directed

A coordinate-free model of translation and rotation for?gwards the vernal equinox, and finally the direction of the

. . . . a}xis completes a right handed orthogonal frame.
single spacecraft in a formation was presented in seveﬁa d bit ref f - The lead bit f d
different forms in Ploen et al. (2004). eader orbit referenceframe: The leader orbit frame, de-

notedF;, has its origin located in the center of mass of the

leader spacecraft. The. axis in the frame is parallel to
1.3 Contribution the vectorr; pointing from the center of the Earth to the

spacecraft, and the;, axis is parallel to the orbit momen-
This paper is an extension of Kristiansen et al. (2005), atuan vector, which points in the orbit normal direction. The
presents a detailed nonlinear mathematical model in six dg-axis completes the right-handed orthogonal frame. The
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Figure 1: Reference coordinate frames (Schaub and JulRigure 2: Auxiliary vectors for the leader orbit reference

ins, 2003). frame (Schaub and Junkins, 2003).
basis vectors of the frame can be defined as 2.2 Coordinate frame transformations
r; h 2.2.1 Rotation from ECI to leader orbit frame
e, = — ey = ey X e, and e, = —,

" The rotation from the ECI frame to the leader orbit frame is

whereh = r; x 1; is the angular momentum vector of thelependent on the parameters of the leader spacecraft orbit,

orbit, andh = |h|. and can be expressed by three consecutive rotations. The
In addition to the basis vectors of the frafig two aux- total rotation matrix can be written

iliary vectorse, ande,, are defined, as shown in Figure 2.

The first vectore, is pointing along the spacecraft velocity R!=R... R iR:0

vector, whilee,, is defined to be orthogonal 9, ande,, ) ) ) )
ase, = e, x ey. If the spacecraft orbit is circular, thenWheref2 is the right ascension of the ascending node of the

e, = eg ande, = e,. The auxiliary vector frame is useddrbit, i is the inclination of the orbity is the true anomaly
when incorporating models for atmospheric drag, which h@kthe leader orbit, and is the argument of perigee of the
Follower orbit reference frame: This frame has its ori- SPacecraft relative to the ascending node.

gin in the center of mass of the follower spacecraft, and

is denoted?;. The vector pointing from the center of the 2 2 Orbit frame transformation

Earth to the center of the follower orbit frame is denoted o 3 . _
r;. Its origin is specified by a relative orbit position vectd¢sing both the original and the auxiliary vectors in the orbi
p=[ry z]T expressed iF; frame components, as showiirame, as shown in Figure 2, spacecraft acceleration can be

in Figure 1, and the frame unit vectors align with the badjgitten as
vectors ofF;. Accordingly,
a = a,e, + agey + apen, = ape, + aye, +apeyn . (2)

P =Xy = I = Tt yeo + zen. @) The spacecraft velocity vector can be expressed according
Body reference frames: For both the leader and the folt0 Schaub and Junkins (2003) as

lower spacecraft, body reference frames are defined and de- o _ D

noted?y; andF,, respectively. These frames have, similar Vg =Tr= n (6 sinve, + ;ee)

to the orbit frame, the origin located in the center of mass

of the respective spacecraft, but the basis vectors are findtkreu is the geocentric gravitational constant of the Earth,
in the spacecraft body and coincide with its principal axisis the magnitude of angular momentusis the eccentric-

of inertia. ity andp = h?/u is the semi-latus rectum of the spacecraft
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orbit. Therefore, since, is pointing along the velocity vec-respectively, where; = x;i, + y;i, + 2i. andv; = %.
tor, The distance between any two particles with massand

m; is denoted by

h
e, = Vs _ 0 (e sinve, + Be9> . (3)
lvs|  pv r rij = |rj — 14
Moreover, since,, is defined normal te,, andey, and the magnitude of the force of attraction between the
hop masses isG‘ml-mj/r% where G is the universal constant
e, =e, Xxe,=— (—er — esin l/eg> . (4) of gravity (Battin, 1999). The direction of the forces are
pv AT

expressed in terms of unit vectors, and the force acting on
The coordinate transformation between the orbit plane ag: due tom; has the directior(r; —r;) /r;;, while the

celeration vector components can now be found from (d§rce onm; due tom; has the opposite direction. The force
(4) as f; acting on mass»; due to all the othelN — 1 masses can

be expressed as

{ar}h[ r esinu}{an}
a T v | —esinv D Gy " mm; . .
g Py T fZ:GZ 7'3»] (rj_ri)7 Z7j:1727“'7N7 Z#]
so that j=1 Y
" 2 esiny 0 and app!ication_ of Nevvtgn’s second law of motion yields
cl =2 | _esiny P o | . (5) Vector differential equations
a pU 7 pv
0 0 N P2 n
r; m;
L=GY (o), i#5. ©)
Note thatC!, is not in general a proper rotation matrix since dt? ; Tf’j (x; )
det Cl =14 e +2ecosv. Together with appropriate initial conditions, this cotsgts
a complete mathematical description of the motion of a sys-
2.2.3 Body frame rotation tem of N bodies. From this relation, the fundamental dif-

) ) o ) ) ferential equation of the two-body problem can be found as
The rotation matrix describing rotations from an orbit fmn\(cf_ Battin (1999))

to a body frame can be described by

d?r W
RZ = [Cl C2 CS} = I+27}S (6) + 282 (6) (6) W =+ T—Br =0 (10)
where the elements; are directional cosines, and wherer = r, — r; is the relative position of masses and

" w=G(mq+ ma).
a=[n €] 7

are the Euler parameters. The mafik ) is the cross prod- 3.2 Formation dynamics

uct operator given by The general orbit equation (10) is the equation describing
the orbit dynamics for a spacecraft under ideal conditions,

S 0 _062 €y 8 i.e. with no orbital perturbations. This equation can be gen-
(€) =ex = €2 _06“" (8) eralized to include force terms due to aerodynamic distur-
—€y €

bances, gravitational forces from other bodies, solataradi
tion, magnetic fields and so on. In addition, it can be aug-
€mented to include control input vectors from onboard actu-
ators. Accordingly, (10) can be expressed for the leader and

whene = [e; €, ez]T. The inverse rotation is given by th
complex conjugate of as

a=[n —€ ]T follower spacecraft as
o Pyt fa
. . - 3
3 Relative translation 2 ”;” ””;f
. af | far
ry=——rf+ —+ —
3.1 The N-body problem vyl my o my

Consider a system a¥ bodies with masses;, wherei = wherefy, f € R3 are the orbital perturbation terms
1,2,...,N. The position and velocity vectors of thgh due to external effects arfd;, f,; € R? are the actuator
mass relative to the ECI franig; are defined as; andv; forces of the leader and follower spacecraft, respectively
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addition, spacecraft masses are assumed to be smalleel&@ivbstituting (17) into (11), and denoting relative velpeis
to the mass of the Earth/., sop = GM,.. The second v = p, leaves the nonlinear position dynamics on the form
order derivative of the relative position vector can now be
expressed as mgv +Cy (V) v+ Dy (0,0,75) p
“+ ng (’I"l,’l"f):Fa+Fd (18)

p=F;—1
M fy g p £, fu similar to the one derived in Yan et al. (2000), where
=—Srp+ -4+ 4o - =%
T myg my ] my m 0 -1 0
C.(v)=2mr| 1 0 0 |eSS@3)
so that 0 0 0
mp = —msp LPS _ % is a skew-symmetric Coriolis-like matrix,
(r+p) Ly
fup + fir — " (£ + £a) . (12) Ao 0
+ a + —— g + . ! Y, )
TR D, (o,irp)p=ms| ¥ f5=r* 0 |p(19)
On the other hand, from (1), the dynamics of the follower 0 0 ;*;

spacecraft relative to the leader spacecraft, referemcibeti , . . i
leader orbit frameF;, can be expressed as may be viewed as a time-varying potential force, and
ry=r1,+p=(r+)e.+yes+ zey. LY
1y (Th Tf) =Mmyg 0
Differentiation of this equation twice with respect to time 0
leaves ] ] o
The composite perturbation ford; is given by
Fr=({F+E)e +2(F +&)é + (r+x)é, my
+ ijeg + 2060 + yéo + Zen, + 256 + 265 . (12) Fa =ty — 0 fa
By using the true anomaly of the leader spacecraft, théand the relative control forcE, is given by

relationships
P F,=f,;— —Lf
a — laf al -
my

ér =I)ee ég = —l'/e,« (13)

&, =iey — e, &g = —ive, — ’eg  (14) The eigenvalues of the matrl, (¥, ¥, 7¢) in (19) are
can be found. Insertion of (13)-(14) into (12), while recog- P N B g Lz
nizing that no out-of-plane motion exists in the ideal case, - 77’1 trov % —rer ﬁ

and hence, = &, = 0, gives
so it can be shown thad, (v, ¥, ;) > 0 when
Pp=(F+&—290—0°(n+z)—yd)e, (15
(20 (4 @) + 5 (1 + ) — yi®) eq + Zep, . g @ (1-¢2)’° 20)
. ! (1+ecosv)’
Moreover, the position of the leader spacecraft can be ex-
pressed as; = re,, and differentiating this expressiorwherea is the semimajor axis of the leader orbit. If the or-
twice with respect to time and inserting (13)-(14), resints bit of the leader spacecratt is circular, ther= 0 and (20)
reduces to'y < a, soD, (v, ¥, 7;) > 0 when the follower
P =ie, + 27€, 4+ 1€, is located within the circle with origin in the center of the
= (¥ — 1) ey + (2F0 + i) ep . (16) Earth and radius. At the other end, when the leader or-
bit tends towards an parabolic orbit, then— 1 and (20)
Subtracting (16) from (15) results thus in the formulatién éeduces tor; < 0, which is practically infeasible. For

the position vector acceleration represented infhfgame; control purposes, it is desirable to halke (v, v, r) < 0,
as this would constitute a "tether-like” connection betwee

p =1y —1y the leader and the follower. However, forcing the follower
2 spacecraft to satisfy such a constraint will lead to unnatu-

] 5 } ral orbital behavior for the follower and hence increase the
+ (i + 208 + vz — y) eg + Zep, . (17) consumption of power.

:(ifQDy'fD xfﬁy)er
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4 Relative rotation is the relative angular velocity between the leader body ref
erence frame and the follower body reference frame. More-
4.1 Attitude kinematics over, from (25) the relative attitude dynamics can be ex-
. N . . . _pressed as
The time derivative of a matriR{ as in (6) can according
to Egeland and Gravdahl (2002) be written as Jrw = wa Jleb W't b — Jlebbwgblb
p =S (“’Z,b) by = RyS (“’Z,b) (21) —Jf‘*’ —JrS {w ( lb) w— Jleb "-’z w  (26)

wherew? , is the angular velocity of frameé relative to b
framea represented in framieands (-) is the cross product gere (2? an%the factz thla'tlb ftb N ‘?’ z;gdS( )Ib t_d ‘
operator described in (8). The kinematic differential eqUﬁI trg tr)1al a\(/je ee;fulsl,e nS(ter Icz’r(; of ( It) cvaluated for
tions for a spacecratft in its orbit frame can be found fro P e leader and follower, into (26) results in

21) together with (7) as
(21) tog @ 3o + 3 (Rfywlty ) w = IRIIS (wlh,) Tl

R T.]S _ 1 _ez sb
4 = [ iy } =3 { nI4S () }wi,sb 22) 4 s(wRf Wl ) I (wrRE W, ) =Tat Lo @7)

Wherewjf’sb is the angular velocity of the spacecraft bodyhere

frame relative to the orbit frame, referenced in the body Foa—1_b
frame. The superscript/subscripis used in general to de- Y= Tdf IRy I T
note the spacecraft in question, sc= [, f for the leader and

and follower spacecraft, respectively.

Y. =7l - IRy

4.2 Attitude dynamics _ _ , _
are the relative orbital perturbation torques and reladive

With the assumptions of rigid body movement, the dynamirator torques, respectively. The third term in (27), dedot
ical model of a spacecraft can be found from Euler's mg-«), can be rewritten as

mentum equation asf{ Sidi (1997))

szz sb =-S5 ( i sb) szfl;b + Ttsil; + T;Szl; (23) (w + Rlb wi lb) Jf (w + Rlb @i lb)
‘*’gf}sb =w i‘,sb + WoC2 (24) =S (w)Jy ("-’ + Rlb w; lb)
wherelJ is the spacecraft inertia matrix aaq IS the an- +8S (Rw Wy ,b) Js (w + sz wy ,b)

gular velocity of the spacecraft body frame relative to the
inertial frame, expressed in the body frame. The parame= — S (Jf (w + R} Wl lb)) w
ter w, is the orbit angular velocityrs’ is the orbital per-

turbation torques:’ is the actuator torque, ane is the +8 (sz w;; lb) Iy ("-’ + Ry w) lb)
directional cosine vector from (6). _ ( g (Jf (w + sz ol lb)) +S (sz Wl lb) Jf) o
4.3 Relative attitude +5S (lebbwz lb) IR} W,

By expressing the relations in (22) and (23)-(24) for boghd accordingly.

(27) can be written as
the leader and the follower spacecraft, and using the quater

nion product defined in Egeland and Gravdahl (2002) as Jw+C,(ww+n, (w)="q+ Y, (28)
_ N ngm + €7 € ] h
—qreoq 2 ! where
a=aroa { mes —nser — S (€5) €
C. J:S (R/, S (R/, J 29
the relative attitude kinematics and dynamics can be ex-" (w) =y ( ) ”’) + ( ] ”’) ! (29)
pressed axf{. Fjellstad (1994)) _s (Jf (w + Rw! lb))
. [n] 1 —e” : . ,
Aa=| ¢T3 gL+ S (e) w is a skew-symmetric matrixG,. (w) € SS (3), and
where n, (w) =S5 (R[bbwiblb)Jleb Wiy,
W= ‘*’z b R{bbwi Ib (25) - JlefbbJ 'S (‘*’ lb) leé?lb
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is a nonlinear term. The skew-symmetry©f (w) can be contains the relative input forces and orbital perturbyegjo
shown as follows: The sum of the first and last term in (28gspectively. It should be noted that when orbital pertur-
is skew-symmetric, sinc = J? andS (1) = —S” (-), so bations and actuator torque is neglected, the relative rota
tional and translational motion of the leader spacecratt an
JSC)+S() I+ [IS()+S (.)Jf]T =0. the follower spacecraft is uncoupled. Equation (31) can
be interpreted as a "mass-damper-spring” system with an
Moreover, the second term in (29) is itself skew-symmetrigdded nonlinear term, and the model has many similarities
and the sum of two skew-symmetric matrices is also skewith models of systems such as robot manipulators, and sur-
symmetric. AccordinglyC.,. (w) will be skew-symmetric. face and underwater shipsf.(Ortega et al. (1998); Fossen
(2002)). This is convenient since automatic control theory
for these types of systems is highly developed, and this sim-

5 Total model plifies the task of controller design.

To write the total 6DOF model of relative translation and

rotation in the spacecraft formation, define the state vectgy Qrbital pertu rbations
T T
x1=[pdq] and X3 = [v ] Spacecraft flying in a Keplerian orbit will be subject to ac-

Based on (18) and (28), the total model of the relative tr(,J”%a_lerations: caused by orbital perturbation forces. Themai

lational and rotational motion between the leader and tRe' c©S for these forces are gravitational attractions: fro

celestial bodies, non-spherical planets, atmospherg; dra
follower spacecraft can now be expressed . .
P P solar radiation pressure (Schaub and Junkins, 2003). The

%1 = A (x1) X2 (30) Iresl'JIting expr?szions forltlhefse perturbatio?ts. arg irlr:het]:(?t

. A owing presented generally for a spacecraft in Earth orbit,
M, =U+W-C .(V.’.w) x2 without relating to leader or follower spacecraft. The su-
D@, 0, rp)x1 —n(w,r,rp) (31) perscripts is used for generality to indicate the orbit frame

for the inflicted spacecraft.
where

_ | myI 0 6.1 Perturbing forces
Mf_[ 0 Jf] J

6.1.1 Atmospheric drag
is a symmetric positive definite matrix containing the mass

and moments of inertia of the follower spacecraft, At altitudes lower than approximatefp)0 km, Earth atmo-
sphere is so dense that the resulting aerodynamic drag has
I 0 a considerable impact on spacecraft orbits (Wertz, 1978).
A(xy) = 1 —€T The aerodynamic force can be written as
0 3
7L+ S (€) 0
is the coupling term between the first and second order dy- £5,,=Cs | 1pV2C4A (32)
namics, 0
. C; (v) 0 wherep is the atmospheric density;] is the spacecraft ve-
C = . : . 7 .
(7 w) [ 0 C, (w) } € 55(6) locity, C; is the drag coefficientd is the equivalent space-

craft surface in the direction of motion of the spacecraft an
C? denotes the orbit frame transformation matrix, as de-
scribed in (5).

|

is the skew-symmetric Coriolis-like matrix,

D (0,i,ry) %) = [ Dy (”(’)erf) g
6.1.2 Solar radiation

is the time-varying potential force term, L ) .
ying p Radiation and particles expelled from the Sun will affect

n, (ry,7y) the spacecraft orbit independent of the spacecraft adtitud
n, (w) (Wertz, 1978). The orbital perturbation force from solar

n(w,r;,ry) = [
radiation is dependent on the reflectance of the spacecraft

is the composite nonlinear term, and finally material, and consists of absorption, specular reflectioh a
diffuse reflection. The surfaces of a spacecraft is usually
U= [ Fa } and W= [ Fa } non-diffuse, and the reflection is a combination of absorp-
Yo Yq tion and specular reflection. The diffuse reflection is hence
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neglected in the further analysis. A visualization of resuwhere
ing forces on a surfacd due to absorption and specular n
reflection is shown in Figure 3. The normal vecioin the Hy, = Re) J, Py (sin ¢)

R n

A H,, = <:) (Crm cosmA + Sy sinmA) Py, (sin @)
which is the infinite series of the geopotential function at
any point P outside of the Earth sphere where ¢ and

€sun

- s JFret A are its spherical coordinates (Sidi, 1997). The parame-
n ters.J,, are zonal harmonic coefficient®,,,,, are Legendre
polynomials of degree and ordetn, P, = P,o, andC,,,
Foe andS,,,, are tesseral harmonic coefficients foe£ m and

sectoral harmonic coefficients far = m (Wertz, 1978).
Specifically, it should be noted thdf, = C,o. The asso-
ciated Legendre polynomid?,,, is defined asdf. Mon-

. . . .. tenbruck and Gill (2001))
Figure 3: Orbital perturbation forces due to solar radiatio

pressure for absorbing and reflecting surfaces.

m d'"l
_ .2\ 2
P (u) = (1 U ) T

P, (u) .

figure gives the orientation of the surfagge and it is in-

clined an anglé,,, to the vectore,,,, which points in the It is seen from equation (34) that zonal harmonics depend
direction of the Sun. For an absorbing surface, the impulsely on latitude, not on longitude, and these coefficierds ar
transferred is in the opposite direction @g,,,. For a re- due to the oblateness of the Earth. The tesseral harmonics
flecting surface on the other hand, the impulse transferiad34) represents longitudinal variations in the Earthpsha

is not generally in the opposite direction as,,,, and the and are generally smaller than zonal terms. A set of values
impulse is also twice as large, due to the reflective rays. For the J,, constants are given in Table 1. If the assumption
a body that reflects a fractiop of the incoming radiation,

while it absorbs the remaining fraction of energy— ),

the total combined force is given as Table 1: Zonal harmonic coefficients (Roy, 2005)
Fsun . . Jn
£5,, =—— cosigunA[(Y—1) €sun—27c08 i5ynn] (33) " .
c 2 1082.6 - 106
where F,,, = 1367 W/m? is the solar constant andis 3 —2.51-1079
the speed of light. 4 —1.60-107°

6.1.3 The mass distribution of the Earth of axial symmetry of the Earth is introduced, only zonal

If the Earth was a Sing|e point mass, the gravitationa| pbarmonics is needed. In addition, from Table 1 of zonal har-
tential due to the conservative gravitational force coudd Bronics coefficients, it is seen that is considerably larger
derived from a gradient or scalar potentia| fUﬂCt[@l@T’) — than the othev,, coefficients. IfJ; is the onIy zonal har-
—u/r. However, the Earth is not a single point mass, biitonic considered, the gravitational potential function ca
an oblate body with a nonhomogeneous mass distributi§g.approximated according to Montenbruck and Gill (2001)
Therefore, correction factors must be added based on #e
geographical position of the spacecraft, and the corrected
potential of the Earth can be expressed according to Wertg; _ kK
(r.6. )
(1978) as

r

2
—1+ %JQ (R5> (3sin® ¢ — 1)] .
U(Tv(ba)‘) = _M/T+B(T7¢7)‘)

whereB (r, ¢, \) is a spherical harmonic expansianis the
geocentric latitude and is the geographical longitude of sing = = _

the spacecraft position. Denotif) as the mean equatorial || [r2 + r2 412
radius of the Earth, the expansion can be expressed as

1 } wherer is the vector pointing from the center of the Earth

In the inertial reference frame,

Tz

oo

B(mm:ﬁf{z

n=2

Hl,n + Z H2,n

m=1

(34) to the spacecraft. The gravitational for€eacting on the
spacecraft is obtained from the gradient of the scalar poten
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tial as Gravdahl (2002))
2
—55 + 3 JoR2 (1575 - 3% =1l x £ (40)
G=pu —&+1JQR2 15005 — 3%y (35)

rd5

wherer? is the vector from the spacecraft center of mass
Te + 1J2R2 (15— — 9“) to the line of action of the force. Hence, perturbing torques
due to atmospheric drag, solar radiation, gravity varietio

and the.J, gravity perturbation forcé®  for the Earth is and third body effects can be found by combining (40) with

grav

the latter terms in (35),e. (32), (33), (36) and (39), respectively.
plers 1y : :
3 T, e 6.3 Dynamical effect of perturbations
0 = SBRIRG | 522 5 | (36) y P
572 _ 3 e The dynamical effect of orbital perturbations on the space-

craft in the formation is a coupling of the rotational and
translational motion of the follower spacecraft. Pertogpi
forces working on the follower are dependent on its posi-
The gravitational potential of other bodies in the vicinify tion, and especially its altitude. The resulting torques du
the spacecraft can create perturbing forces and torques.tedhese perturbing forces, which cause rotational motfon o
an Earth-orbiting spacecraft, the Sun and the Moon caut# spacecraft, will thus also depend on the position. Ac-
perturbing forces that can change the orbit parameters ceerdingly, the rotational motion is affected by the transla
siderably. The Keplerian orbit models are derived from tii@nal motion. Similar, the effect of perturbing forces due
two-body problem equation in (10), after a simplification d® atmospheric drag and solar radiation on the transldtiona
the general equation (9) due to the assumption the spa®étion is dependent on the orientation of the spacecratft,
craft and the orbited planet are the only elements presenvarying with the size of the equivalent surface area in the
an extraction of the masses of the spacecraft and the Earflatige direction. Therefore, the translational motion o th
performed on (9), the resulting accelerations afeRattin follower spacecraft is affected by the rotational motion of

6.1.4 Third-body perturbing forces

(1999)) the spacecraft. The result of orbital perturbations is #us
two way coupling in the model presented in (31). Also, use
d? N . :
r_ Gm (rs —11) + GZ —n) (37 of non consgrvatl_ve_ actuators as thruster.s, mqgnetm rods

dt? and solar sails will in some actuator configurations cause
) both rotational and translational spacecraft motion.

d o mq

o zarg (r; —ry) +GZ rj—ry). (38)

3323

7 Simulations
Subtraction of (37) from (38) results in the equation for the
two-body problem in (10) with an additional perturbing acFo illustrate the impact of the perturbing forces and togjue

celeration due to the — 2 perturbing bodies, simulation results for two spacecraft in a leader-follower
formation are presented. It should be noted that only the ef-
L P Z rﬁ - rﬁ fects of the gravity force and atmospheric drag are included
dt2 e ng le in the simulations. The reason for this is that solar radiati

and the third-body effects are dependent on the location of
where, as before, = r, — r; is the relative position of the the Sun and other celestial bodies. The effect of these per-
two primary masses, and; = r; — r; andry; = r; — ro. turbations will therefore vary, depending on the orbit pa-

Hence, the perturbing acceleration is rameters and time of the year.
For simplicity of simulation, both spacecraft have a to-
s _R: Z rﬁ Ty (39) tal mass ofm = 1 kg and their moments of inertia are
nbody — Hri 3, T J = diag ([0.06, 0.06, 0.003]) kgm?. The leader space-

craft is assumed perfectly controlled in a circular orbitrwi
wherep,; = Gm; is the gravity constant for thgth per- inclination22.5° and altitude250 km, and with a constant
turbing body. attitude relative to the ECI frame. The follower spacedsaft
located10 m behind the leader in the along-track direction,
with the same initial orbit velocity and attitude. The simu-
lations were performed using a Runge-Kutta ODE solver.
The resulting torque-; on a spacecraft due to a perturbing The position and velocity of the follower relative to the
force 7 can be found from the relatioref( Egeland and leader are shown in Figure 4. Similarly, the relative atku

6.2 Perturbing torques
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Figure 4: Relative position and velocity between leader aR@jure 5: Relative attitude and angular velocity between
follower spacecratft. leader and follower spacecratft.

and angular velocity are presented in Figure 5. If no orbitéle Earth, in accordance with the principle axis of inertia.
perturbations were present, the relative position andid#i In addition, gravity perturbations originating from oldat
would be constant. Hence, the perturbing forces and torqii€ss of the Earth results in non-smooth attitude changes, as
can be seen from the figures to have a large impact on gh@wn in the simulation results.
system states. From the results presented in Figure 4, iRegarding the perturbations due to solar radiation and
can be seen that the perturbing forces causes oscillationthird-body effects, these are not included in the simutetio
relative position. This is due to the gravity force workingf is however possible to get a notion of the impact of these
on the follower. The force pulls the spacecraft towards therturbations. Since the orbital time is short, the locatib
Earth. However, as the follower moves below the leadether celestial bodies like the Sun and the Moon can be con-
it has an orbital velocity corresponding to a higher orbijdered constant over one orbit period. If these bodies are
and accordingly, the altitude increases. When it reaches lthgated in the orbital plane, they will result in a change in
same altitude as the leader orbit, it is again drawn dowrbit eccentricity for the follower. The perturbing forceel
towards the Earth, and the cycle repeats. Similar, the-ostil solar radiation will decelerate the follower as it moves
lations in the cross-track direction is due to gravity. ®indowards the Sun, and accelerate it as it moves away from
the Earth is not a single point of mass, the follower will bidae Sun. If the Sun is located out of the orbit plane, the fol-
drawn to the side with the largest gravitational pull. Howewer will experience a constant force away from the Sun.
ever, the main gravitational component will be towards tfde third-body effects have the opposite effect on the fol-
center of the Earth, so as the spacecraft moves to one $iseer compared to the solar radiation, and accordingly, the
in cross-track direction, the gravitational force compunespacecraft will experience a gravitational pull towardseot
in the opposite direction will pull it back again, and the inselestial bodies.
creased cross-track velocity will move it over to the other
side. As with the altitude, this is also a cyclic behavior,
however, the cross-track motion seems to be more un@-Conclusion
ble. The along-track distance between the spacecraft was
however not oscillating, but constantly decaying. The maif this paper, a nonlinear mathematical model of a leader-
cause of this is probably the atmospheric drag, which Kafiower spacecraft formation in six degrees of freedom has
considerable effect at altitudes bel®d0 km. Hence, the been derived and presented. The model describes the rel-
along-track velocity of the follower is reduced. Also, osative translational and rotational motions of the spadecra
cillations in other directions cause the spacecraft to leavand extends previous work by providing a more complete
longer flight path, and thus it lags behind. factorization, together with detailed information abou t
The relative attitude was also seen to oscillate. All threeatrices in the model. The resulting model shows many
body axes were influenced by the perturbations, they hadhilarities with models for systems such as robot manipu-
the largest effect on the, axis. This is due to the gravitylators and marine vehicles. Moreover, mathematical models
force, which constantly tries to turn the follower towardsf orbital perturbations due to gravitational variatioas,
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mospheric drag, solar radiation and third-body effectehaMaasz, B., Berry, M. M., Kim, H.-Y., and Hall, C. D.

been included for completeness. Results from simulationdntegrated orbit and attitude control for a nanosatellite

of a leader-follower spacecraft formation have been pre-with power constraints. IRroceedings of the AASAIAA

sented to illustrate the effect of the orbital perturbadion Foace Flight Mechanics Conference. Ponce, Puerto Rico,
2003 .
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