MODELING, IDENTIFICATION AND CONTROL, 2005, vor. 26, No. 3, 121-134
doi:10.4173/mic.2005.3.1

Application of seeding and automatic differentiation in a large
scale ocean circulation model

FRODE MARTINSENT and DAG SLAGSTAD}*

Keywords: Jacobian, automatic differentiation, seeding

Computation of the Jacobian in a 3-dimensional general ocean circulation model is
considered in this paper. The Jacobian matrix considered in this paper is square, large
and sparse. When a large and sparse Jacobian is being computed, proper seeding is
essential to reduce computational times. This paper presents a manually designed
seeding motivated by the Arakawa-C staggered grid, and gives results for the
manually designed seeding as compated to identity seeding and optimal seeding.
Finite differences is computed for reference.

1. Introduction

Computation of the full square and sparse Jacobian in a 3-dimensional general ocean
circulation model is considered in this paper. When a large and sparse Jacobian is being
computed. proper seeding is essential to reduce computational times. In addition,
rounding errors should be kept at a minimum. Today the most widely used tool for
computing Jacobians is automatic differentiation (AD). AD generates analytic derivates of
functions provided as inputs in form of a source code, in e.g. C, Fortran or Matlab.

The AD tool parses the source code, and uses either source transformation or operator
overloading to generate new source code for the desired gradient Griewank (2000).
In either case, the mathematical founding is through usage of the chain rule. Consider
the function f(u.v)=wu-v. By using the rules of differentiation we have
f'uvi=u'-v+u-v'. To generate a source code for this function, the AD tool needs a
list of the independent variables (1 and v in this case). Then the AD tool can parse the
source code looking for names contained in the list of independent variables. Whenever
such a name is located, the rules of differentiation is applied to build [f'(u, v). Note that
f'(u,v) does not contain rounding errors if f is sufficiently smooth. If f is only
continuous, special rules may be applied to trap non-smooth points.

If f(u, v) appears at other places in the source code in building say g(f), then the
chain rule is used. This will generate a ‘trace” of the independent variables though the
code to the final dependent variables. This trace is maintained in a graph. The branches
of the graph may be independent in computing the derivate of the dependent variables
with respect to different independent variables. Therefore, the derivative with respect to
a set of independent variables may be computed simultaneously. Finding such sets of
independent branches is termed seeding. Finding the optimal seeding is NP-hard.

If the Jacobian matrix has low density, seeding is likely to give substantial reductions
in computational times. This is often the case with functions specified as partial

*#Corresponding author. Tel: + 47-73592407. Fax: + 47-73595660. E-mail: dag.slagstad @
sintef.no

1Department of Engineering Cybernetics, NTNU, 7491 Trondheim, Norway.

$SINTEF Fisheries and Aquaculture, SINTEF, Trondheim, Norway.

122 F. Martinsen and D. Slagstad

differential equations (considered in this paper) and in dynamical systems with instanti-
ation over a time horizon as in nonlinear model predictive control (NMPC) and receding
horizon estimation.

The following model is considered: The state variables are horizontal velocities, U,
v, elevation, E, temperature, 7, and salinity, S. In the following we define the notation
for a scalar Y and a vector ¢ = (U, V, W), where W is the vertical velocity:

Vo= ou N Q‘f{_ aw
dx dy 0z
Ny hp nr
. = + VWL
(- VW U&x Vay+ 2
9 a.p) (a%p a”’-:,b)
=— A, ")+A |5 +—
AV az("oz As ox? Byz M)
Define the operator
FDoy = (¢ - V)Y — Ay)

where A. and Ay are diffusivities. The subscript @ distinguishes between the horizontal
diffusivity for the velocities (Ay) and properties temperature and salinity (Ag). Using the
notation (1), and assuming hydrostatic pressure, the state equations are given as:

Mass balance (continuity)

V=0 3
Impulse balance
au J
D —fv—1-P 1, @)
at p ox
av 1 9
O D= —fU—=+F 1 by)
ot p dy
Temperature and salinity
aT
4+ FDT=0 (©6)
at
as
-+ FDpS = 7
% eS=0 M

fis the Coriolis term, p is density and by, by are friction terms, Note that the vertical
velocity W is given algebraicly from (3), and that the elevation E is introduced as a state:

E—J Wdt

Here, W, is the vertical velocity in the upper level. The hydrostatic assumption then
gives the pressure p as:

E
.v(z)=J pgdz + Py,

Here, g is gravity and P, is atmospheric pressure. The present model constitutes
the hydrodynamic part of the biogeochemical model SINMOD, with details given in
Slagstad & McClimans (2005). The SINMOD model is implemented with the Arakawa-C

Application of seeding and automatic differentiation 123

staggered grid, z-levels, mode-splitting, FRS (Flow Relaxation Scheme) at the open
boundaries and a super-bee limiter for the advection scheme.

In the present study, mode-splitting and FRS relaxation was excluded. Mode-splitting
was excluded by setting the outer time step equal to the internal time step, and then only
doing one iteration in the internal loop. This will maintain numerical stability and
exposes the sparsity structure of the Jacobian. E.g. the Jacobian is defined at a time i,
and including mode-splitting will in fact cause computation of a (dense) sensitivity
matrix over the outer time step.

FRS relaxation is excluded due to the small model domain, see Section 2. E.g.
including FRS relaxation on this domain, will dominate the elements of the Jacobian on
nearly all grid points (since the FRS zone covers nearly all of the domain). This leads
to a dense Jacobian on this small domain. FRS relaxation can be included on larger
domains if identity seeding is used for the grid points in the FRS zone. In the case of
identity seeding, nothing need to be done. In the case of manual seeding one needs to
manually revert to identity seeding in the FRS zone, whereas optimal seeding reverts to
identity seeding in the FRS zone automatically. Hence, the FRS relaxation pose no
difficulties for proper seeding.

The Jacobian of model (3)—(7) is computed using automatic differentiation Griewank
(2000) in this paper. This Jacobian matrix is square and sparse, and is needed in gradient
based methods like nonlinear least squares (NLS) and implicit simulation schemes. Since
the Jacobian is square, the forward mode of automatic differentiation (AD) is preferred.

The AD tool ADIFOR Bischof er al. (1996) has been applied in this paper. ADTFOR
(v.2.0) is a forward mode, source transformation tool for F77 programs. ADIFOR has
been applied to 3 dimensional models previously; Park et al. (1996) discusses the use of
ADIFOR in a 3-D atmosphere model with Arakawa-C grid and Hovland et al. (1998)
deals with a Navier-Stokes system. These references give no detail on the use of
ADIFOR.

A discussion of the forward and reverse modes of automatic differentiation in the
context of oceanographic models has been published by Giering & Kaminski (1998),
Giering (2000), Elizondo et al. (2002). The reverse mode of AD is utilized in the 4DVAR
and 3DVAR methods for sensitivity studies and data assimilation. These methods utilize
the adjoint method Errico (1997), Navon (1997) from optimal control theory. In the
adjoint method, assuming that there are few measurements, the resulting Jacobian will
be non-square and dense (depending on the measurements). There are a number of
applications with the adjoint method, see Dickey (2003) and the references therein.
Robinson er al. (1998) gives an overview of data assimilation methods in oceanography.
Non-smoothness and numerical issues are addressed by Thuburn & Haine (2001).
Homescu & Navon (2003).

For large model domains, the order of the present Jacobian will be large and
exploiting sparsity is essential. Sparsity can be exploited to reduce computational
demands Curtis et al. (1974), Coleman & Moré (1983) and storage demands. Reducing
the computational demands requires design of a seeding matrix that allows linearly
independent columns to be computed simultaneously.

This paper presents a manually designed improved seeding which is motivated by the
Arakawa-C staggered grid, and gives results for the improved seeding as compared to
identity seeding and optimal seeding. Optimal seeding is provided by the DSM algorithm
Coleman et al. (1984). Note that seeding issues applies to finite difference approxima-
tions of the Jacobian as well. Seeding for finite differences and reducing storage
demands are not considered in this paper.

124 F. Martinsen and D. Slagstad

To the best of our knowledge, seeding has not been discussed in relation with
oceanographic models previously. The reason for this is that the studies using automatic
differentiation with oceanographic models mainly focus on sensitivity studies with few
measurements. For such cases the reverse mode of automatic differentiation (giving a
dense but relatively small sensitivity matrix) is the best choice. The usage of seeding is
relevant in cases where measurements are distributed, e.g. elevation measurements from
satelite data. Seeding is also relevant in cases where a general optimization algorithm is
to be applied, e.g. in control applications. The form of the Jacobian in such a setting
is discussed in Martinsen et al. (2004). Data assimilation for oceanographic models has
been discussed and implemented in the Ensemble Kalman filter (EnKF) by Evensen, see
e.g. Evensen (1994). The EnKF also depends on few measurements being used to allow
effective computation of the filter update.

The paper is organized as follows. In section 2, the model implementation and its
influence on the sparsity structure of the Jacobian is discussed. In section 3. the concept
of seeding is introduced with examples of how this can be implemented for variables in
2 and 3 dimensions. Computational results are given in section 4, and conclusions and
directions for future research are given in section 5.

2. Model implementation and seeding

In this section we describe the numerical model used to investigate the performance
of automatic differentiation.

The model domain is covered by a 20X 15 grid with resolution 1.5 km, There are
5 grid points in the vertical direction with level thickness [10, 10, 10, 35, 35] meters
giving a total depth of 100 m. The depth matrix used in the model present setup is shown
in Figure 1. This small domain is chosen because it allows storage and computation of
the dense Jacobian on a personal computer. The dense Jacobian is included for reference
only. Automatic differentiation and seeding on a sparse Jacobian is not limited by
practical model domains. We also note that if the Jacobian is to be used with the
extended Kalman filter, storage of the dense co-variance matrix does limit application on
realistic model domains. The seeding described in this paper is extendible to larger
domains.

After temporal discretization the model (3)—~(7), can be written X; 4+ 1 = fi(X..) where
k is the time index and X; is a vector with the 5 states. With this notation, the following
Jacobian is considered in this note:

ol au ou aU all

aul, avly oEl, oSl oTle
av| av| av| av| av
aul, avly ael, asl, arl,
GE| OE| OE| OE| oE ®
aUl, oVl oEl, asl, Tl

as| as| oS| aS| oS

aU |, avly oEl, asl|. aTl,

Jk=

aT ar ar aT ar

3Uk aVk aEﬁ aSk aTt

Application of seeding and automatic differentiation 125

Depth matrix

X (1:IMAX) [1.5km]

Y (1:JMAX) [1.5km]

Figure 1. Depth matrix. The figure shows a mesh plot of the depth matrix used. The depth matrix
has a shelf parallel to the x-axis. There is dry land along the two borders paraliel to the x-axis. There
are 20 grid points along the x-axis and 15 grid points along the y-axis.

Table 1. Variable dimensions

Variable Dimensions

8] IMAX +1 X JMAX X KMAX =21 X 15X 5
\% TMAX X JMAX + 1 X KMAX =20X 16 X §
E IMAX + 2 X JMAX +2=22X% 17

S IMAX+ 2 X JMAX +2 XKMAX =22 X 17X 5
T IMAX +2 X JMAX +2 X KMAX =22 X 17 X35

The Jacobian (8) is evaluated at the initial state (U, V, E)=(0, 0, 0) and with a sloping
plane in S and T to avoid internal cancellation. The chosen initial state gives smooth
gradients, except from evaluation of square roots at zero (which does not cause
non-smoothness since the values are known to be non-negative). Since the sparsity
pattern is given by the graph (an internal part of the antomatic differentiation tool) of the
numerical model, it is not affected by the choice of initial point. No wind stress,
boundary flows or other forcing is present. FRS relaxation and mode-splitting is
excluded, see discussion in Section .

The dimensions of the variables are listed in Table 1. In Table 1, the numerical
values reflect the model domain shown in Figure 1. This gives the total Jacobian size of
7289 X 7289. This amounts to about 425Mbyte when stored as a dense matrix (in double
real). The storage for the Jacobian as a sparse matrix will be discussed later.

2.1. Spatial finite difference grid

It is of interest to understand the spatial grid in detail, as it is related to the diagonal
bands occurring in the Jacobian. The model uses the Arakawa-C grid. See Figure 2 for
a detail.

126 F. Martinsen and D. Slagstad

4

€ o o
f e s e s s e saaa e ‘. x b X _: e

‘4] ‘B .2

O ¥ O x O :
IS YO N X2 i
U

Figure 2. Arakawa-C grid. The figure shows a detail of some grid points in the horizontal plane.
The state variable U is defined on points marked with capital letters, while V is defined on points
marked with lower case letters. E, S, T are defined on the gray circles marked with numbers.

In the SINMOD implementation. the computational finite difference grid is defined
by:
U = UG+ Mf Vi + by ©

Vi =vE— AT 4 by (10)

Here, k is the time index, i and j are the spatial index in the x and y direction
respectively. At is the temporal discretization interval. Note that the U’s are computed
prior to the V’s. In particular U and V are defined by:

f._/',j:%(U;,,"F Uivij+ U -1+ Uik ;-1 (11)
Vi=XVi, i+ Vija+Vio+ Vo) (12)

Referring to Figure 2 and equation (9), a perturbation of U}, will only influence U%""
(at the same point). However, due 1o equations and (10) and (11), the four points vk
Vi, V™ and V"' will all be influenced. The six elevations (numbered 1-6) will all
be influenced (since they all include cells that experience a change in either U or V).

If V¥ is perturbed, due to equation (12) all of Uf,' ! Uﬁ* L Uz ' and Uf,' ' will be
influenced. Then, nine elements in V are influenced (all points including at least one of
vkt ukt okt okt in equation (11)). Similar explanations can be carried through
for E, §, T as well.

An incidence plot' of the resulting Jacobian is shown in Figure 3. The density of the
matrix is

d=100%

n;:z 537969 ~ 1.0%

= 100%
nXm 72892

| An incidence plot displays a dot at every non-zero location of the matrix.

Application of seeding and automatic differentiation 127

. AD: Jacobian
NN\ N\ NN NANNNN AN
NN\ é\\ NN N ANNNN N
A NN ARRRRANRRRAR ARRRN
NANNNNNNYN AN N AN NN
NN OSSN MNONON NN
N NN NS NINNNANN
000NN\ N NNNN N NN N WINNN A Y
NN N NN\ SNNN N AUNNNNN
@ MANNANNNYNN, WNNNNNNANNANAN

(=)

§ N\ \N\ NN AR
T O°NNAN \NNAS NS NNNNA Y
 NMNNAANNNAYN NNNN ANNNANN
5000 NSNNNNANN NSNS L9 S NN
N\ NN NN NN
ER NN § N AN NN NAN
NANANNWNNN NWAN N ANNANNN
ANNNANNNN NANN A AN AN
70 NN NN sua NN LS
] 1000 2000 3000 4000 5000 €000 7000

nz=537969

Figure 3. Incidence plot of Jacobian. The black lines separates the Jacobian into 25 blocks that
corresponds to the blocks given in equation (8). Note the non-zeros reported in the figure. The dashed
rectangles mark areas blown up in Figure 4.

where nnz is the number of non-zeros in the Jacobian, and n, m is the number of columns
and rows in the Jacobian. A density of 1% implies that using linear algebra for sparse
matrices will be efficient for this application. This sparse matrix requires about
6.5MByte storage in double real in co-ordinate sparse format e.g. about 1.5% of storage
needed for the dense matrix.

Consider the upper left super-block dU/0U from (8) in Figure 3. The 5 vertical levels
in the model setup appears as 5 diagonal bands corresponding to the velocity component
U(x, y) along the x-axis for each vertical level k. The leftmost column in this super-block
shows influence of U(x,y) for k=1 on the levels 1 ... 5. The second column in this
super-block shows influence of U(x,y) for k=2 on the levels 1...5. Likewise for
columns 3, 4 and 5. The shelf shown in Figure 1 is causing the shortened diagonal bands
at lower levels,

The width of the diagonals are not fully resolved in Figure 3, but blow-ups of the
two marked areas inside super-block (1,2), aU/OV, and (2, 2), oV/9V, are shown in
Figure 4. The detailed blow-up shown in the right column in Figure 4 confirms the above
discussion in relation to Figure 2 and equation (9)(12) on the Arakawa-C grid. The
upper pane shows the effect of a perturbation in V on U (second vertical level). Observe
that a perturbation of one V¥ ; alters 4 U**! elements at the same vertical level (likewise
at all levels due to the hydrostatic assumption, not shown in blow up). The two bands
show U elements at two neighboring j-levels.

Similarly, the lower right pane shows that a perturbation of one V; ; alters 9 VX"
elements at the same vertical level (likewise at all levels due to the hydrostatic
assumption, not shown in blow up). The threc bands show V elements at three
neighboring j-levels.

128 F. Martinsen and D. Slagstad

AD: Jacobian (blow up)

0 0
50 : Y
of
100 %
150 20
200 h
30
250 .
300 40 iy,
0 100 200 300 0o 10 20
nz=892 nz=73
0 o
,
50 ! 0f
wof °© 201 F
150 30 %‘E___
200 aof sy
250 50|
300 & T,
0 100 200 300 0 10 20
nz=1920 nz=164

Figure 4. Incidence plot of Jacobian (blow up). The figure shows (left column) a blow up of the
marked (dashed rectangles) from the incidence plot of the Jacobian in Figure 3. The marked areas
in the left column are blown up again in the right column.

3. Automatic differentiation

Automatic differentiation (AD) is a technique for producing derivatives of a function
automatically. The model must exist as source code in program that is input to the AD
tool. An overview of AD tools is available at www.autodiff.org. The produced
derivatives does not have round-off errors like finite differences do. That is AD produces
analytic derivalives, in the sense that they are accurate to any order as long as the
underlying function is sufficiently smooth. The underlying principle is the chain rule for
differentiating expressions. See Griewank (2000) for further details, and Nocedal &
Wright (1999) for an introduction. In the present paper, the AD tool ADIFOR Bischof er
al. (1996) has been applied.

3.1. Background

The AD tool ADIFOR is a source transformation tool. That is, new source code is
generated that must be compiled and linked. A call to this new code will produce a
directional derivative along a user provided direction G_X. The notation G_X for the
gradient of the variable X follows the ADIFOR users manual. Hence, ADIFOR produces
the result:

GY=J-GX

Here J is the Jacobian. If G_X =1, we have G_Y =J (the Jacobian). The matrix G_X is
a termed a seed matrix. A general seed matrix is denoted Gs. E.g. if the variable X is
to be differentiated, ADIFOR produces the derivative variable G _X with one added

Application of seeding and automatic differentiation 129

dimension as compared to X. For instance, if f=(fi, 5, /3)’ and X = (x;, x2, x3)', the
Jacobian is:

.
ox; dx; dxs
|
ox; dxy Oxs
o o o
L dx; dx; Ox3 J

It is easily comprehended that differentiation gives an extra dimension in the Jacobian.
Note that ADIFOR also adds one dimension to G_X to allow for a flexible interface. That
is, instead of making repeated calls with the vector X = ¢;, one can make one call with
X =1 in order to evaluate the Jacobian.

The ADIFOR generated code executes faster if the seed matrix Gs has low
dimension. This allows faster computation of the Jacobian if it has many linearly
independent columns. Consider the example:

ay az 0
h=|au an 0
0 0 asy

Where column 3 is linearly independent from the first two. Instead of setting Gs, =1, one
can set

1 0
Gs,=| 0 1
01
to speed up calculation of Jy. In detail.
an ap 0 10 ay ap
an an 0|0 1 |=|an axn (13)
0 0 axn 0 1 0 an

which gives J; after unpacking. If, on the other hand. the seeding

10
Gs,=| 1 0
0 1

is applied, the resulting directional derivative is no longer the Jacobian. A Jacobian on
the form given by equation (13) is called a compressed Jacobian. Before conventional
linear algebra packages can be applied. this matrix must be unpacked into an uncom-
pressed form. This unpacking adds overhead to the application. The computational
results in the following shows that this overhead may be substantial. Formalism on
seeding can be found in e.g. Hossain & Steihaug (2002).

130 F. Martinsen and D. Slagstad

3.2. Dense seeding in 2 and 3 dimensions

The main user problem is setting up a correct seeding matrix Gy for a distributed
system. In the SINMOD model, the independent variables have dimensions 2 and 3 as
shown in Table 1. The ADIFOR user manual Bischof et al. (1998) only shows how to
deal with variables in one dimension. The following sections extends this to 2 and 3
dimensional variables.

As an example, consider E which has dimension TMAX + 2 X JMAX + 2. ADIFOR
will produce a variable G_E of dimension G_P X IMAX + 2 X JMAX + 2, see Figure 5.
Here G_P is a user selected parameter that must be larger than or equal to the largest
variable dimension of all variables.

To understand seeding in the 3-dimensional matrix G_E it is beneficial to consider
what happens when the matrix is unpacked into 2 dimensions. Then the sub-level
matrices along the j axis are stacked below each other to produce a matrix of dimension
(G_P+(JMAX +2)) X IMAX + 2. The identity seeding for this system must then be
initialized for each j-level independently. That is, the ADIFOR generated code must be
called JMAX + 2 times with seeding running through the j-levels. The following code
illustrates this:

IF (VNUM .EQ. 1) THEN
DO I=0, TMAX+1

G_E (I, I, JNUM) =1.0
END DO

ELSEIF (VNUM .EQ. 2) THEN
DO I=1, IMAX+1

G_U(I, I, JNUM, KNUM) =1.0
END DO
END IF

G P

v

l

Figure 5. The seed matrix G_E. The figure shows the principal layout of the seed matrix of

3 dimensions. Note that G_P in ADIFOR is a user selected parameter that must be large enough to

allow for storing all components of the derivative. According to Table 1, the minimum value of G_P

is JMAX+2 =22 (for the elevation E). The indexes i, j addresses all elements up to
(IMAX + 2, JMAX + 2).

Application of seeding and automatic differentiation 131

The above code is snipped from the identity seeding implemented in the actual
FORTRAN program. The user supplies the three parameters VINUM, JNUM and KNUM. The
parameter VNUM controls which of the variables G_E and G_U is to be seeded. The
parameter JNUM controls which j-level to be seeded, while KNUM controls which k-level
is to be seeded (KNUM only applies for G_U, since G_E is of dimension 2). The user
must keep track of (e.g. save) the intermediate results produced by the ADIFOR
generated code. The optimal seeding discussed later, needs the sparsity pattern as input.
The sparsity pattern is easily generated using identity seeding.

3.3. Improved dense seeding

The seeding described in section 3.2 above is termed the identity seeding for
SINMOD. Now consider Figure 1 and the 2-dimensional variable E. When identity
seeding is used, all points along the x-axis are perturbed for a given j-level. Looping
through the JMAX + 2 j-levels, the full Jacobian is built.

However, Figure 2 and the discussion in section 2.1 shows that variables along every
3rd j-level are independent. Hence, a better seeding can be constructed by replacing the
identity seeding with the following code:

DO J=1, JNUML
JJ = JNUM (J)
DO I=1, IMAX
G E(I, I,JdJ)=1.0
END DO
END DO

Here JNUM = {1,4, 7, 10, 13} and JNUML = 5 if JMAX = 15. (Separate calls need to be
made for j-index 0 and 16.) The second call to the ADIFOR generated code would
address j-levels = {2, 5, 8. 11, 14}, and the third addresses {3,6,9,12, 15}. This will
reduce the loops needed for computing the Jacobian with respect to E from 15 to 3
iterations. (Plus one extra for () and 16).

The vertical layers applicable to U, V, S, T may not be addressed in this manner since
all layers in each coordinate (4, j) are linearly dependent.

3.4. Sparse seeding in 2 and 3 dimensions
The sparse seeding for G_E is shown below.

DO J=1, JNUML
JJ = INUM(J)
DO I=0,IMAX+1
CALL SSPSD(G_E(I, JJ), I+1, 1.0, 1)
END DO
END DO

Here, JNUM and JNUML is as given in section 3.3. Identity seeding is achieved by setting
JNUM = {i} and JNUML =1, and then calling the ADIFOR generated code with
i =10, ...,JMAX + 1}. E.g. a total of JMAX + 2 calls to the code is made.

Improved seeding is achieved by setting JNUM={1,4,7,10,13,...} and
JNUML = length (JNUM). Here, only 3 calls to the ADIFOR generated code are
needed. This is independent of JMAX. (One extra call for ONUM= {0, JMAX + 1} is
needed.)

132 F. Martinsen and D. Slagstad

Sparse unpacking of the internal ADIFOR format into a 2-dimensional compressed
Jacobian can be done as shown below for G_U.

DO I=1, IMAX+1
DO J=1, JMAX
DO K=1, KMAX
CALL SSPXSQ(i_data, v datar, inlen, g u(I, J, K),
& outlen, info)
IF (outlen .GT. 0) THEN
NZU1-Z2U1 + outlen
DO P=1, outlen
g_u_ivec(NZUl —outlen+P) =I+ (K-1)*
& (JMAX +0) *(IMAX + 1) + (T—1)*(IMAX + 1)
g u jvec(NzZUl —outlen+P) =i_data(P)
g u valR(NZU1 — outlen +P) =v_dataR(P)

END DO
END IF
END DO
END DO
END DO

This gives a coordinate representation of a sparse matrix. Observe that explicit knowl-
edge of the sparsity pattern is not utilized since all /, J, K are looped through. Hence,
there is a potential for making numerous calls to SSPXSQ that will return cutlen = 0.
Refer to the ADTFOR manual Bischof et al. (1998) for explanation of the SSPSD and
SSPXSQ calls.

3.5. Optimal sparse seeding

A better seeding for the vertical layers can be addressed through application of graph
coloring algorithms Curtis et al. (1974), Coleman et al. (1984), Hossain & Steihaug
(2002). The software DSM Coleman ef al. (1984) was downloaded from
www.netlib.org, and used the sparsity pattern generated by identity seeding as
input. Since DSM only accept 2-dimensional sparsity patterns as input, the sparsity
pattern was unpacked into 2 dimensions for this purpose. The resulting seeding from
DSM, was then translated into 3 dimensions. Since the number of groups returned by DSM
equals the minimum number by a result in Curtis er al. (1974), optimal seeding is
achieved. Note that DSM does not give optimal seeding in general Hossain & Steihaug
(2002).

4. Results

The computational times for the sparse AD schemes from section 3 and a simple
finite difference scheme are given in Table 2. The CPU times are measured with the
Matlab cputime command, and include the uncompressing time.

Matlab accessed STNMOD and the ADIFOR code through a gateway. Matlab gathered
the results from ADIFOR into preallocated matrices, and visualized the resulting matrix.
Gathering the results in this context includes uncompressing into 2 dimensions the
matrices returned from the ADIFOR generated code. Using Matlab for this is time
consuming, and future uncompression should be done entirely in FORTRAN.

Application of seeding and automatic differentiation 133

Table 2. Computational times

CPU time
Method Seeding NGRP ADIFOR UnNcompress Total
fa — — 22 min — 22 min
sparse ad identity 7289 86 sec 11 sec 97 sec
sparse ad improved 2230 29 sec 35 sec 64 sec

sparse ad optimal 247 5 sec — —

The reported percentage of uncompressing is considerably higher for the improved
seeding. Note that this fraction does not include the FORTRAN code pieces shown in
section 3.5. The reported percentage of CPU time for uncompression was spent building
Matlab sparse matrices (repeated calls to the sparse subroutine) and stacking these
into preallocated sparse matrices.

As noted in section 5, the improved seeding makes 3 calls to the ADIFOR generated
code independent of the size of JMAX. For a system setup on a larger domain, the
difference between identity and improved seeding is expected to increase. This is under
the assumption that the uncompression time does not increase even more.

The number of groups for the improved seeding is about a third of identity seeding
(7289 groups). This is reasonable, since on average every third j-index is computed
simultaneously. Still, this is almost 10 times higher than the optimal number groups. The
only benefit of the improved manual seeding is that it can be made generic, whereas the
optimal seeding need to be generated for each model setup. Note that it is not necessary
to rerun ADIFOR when the model domain or other setup parameters are changed.
Changes in the model itself will require a new run of ADTFOR.

Observe that the £d (finite differences) shows the CPU time for constructing the
dense Jacobian by perturbing each column of the Jacobian. That is, a total of n = 7289
calls to the ADIFOR code is made. The reported 22 min includes the time to store each
column in a preallocated matrix. The computer did some paging due to the large storage
demand (425MByte). The computations were implemented in Matlab with some
routines available as mex/d11-files on a Dell Latitude C800/Pentium I11I/1GHz/512Mb
RAM running Windows 2000.

The finite difference computational and storage demands can be improved by
application of e.g. the FDSJ routine accompanying the DSM routine Coleman ef al.
(1984). Hence. the reported result for finite differences results from a naive implemen-
tation and should not be interpreted as a limitation of the finite difference approach.
They are included to indicate that a careful implementation is essential for performance
of both automatic differentiation and finite differences.

5. Conclusions

Seeding of 2 and 3 dimensional matrices has been presented. The scheme is trivially
extendible to n dimensions. An improved seeding motivated by the finite difference grid
was suggested. Computational results show some promise for these seeding approaches.
still application of graph coloring methods yielded superior results.

A future work task is to reduce uncompression times, by writing this in FORTRAN.
The resulting Jacobian can be used directly to discuss sensitivities of the model, or in
gradient based estimation algorithms.

134 F. Martinsen and D. Slagstad

Acknowledgment

This paper was financially supported by the Research Council of Norway (project
no. 128726/420 — MODTEQ).

References

BisCHOF, C., CARLE, A., KADHEMI, P, & MAUER, A. (1996). ADIFOR2.0: Automatic differentiation
of Fortran 77 programs. IEEE Computational Science and Engineering 3(3), pp. 18-32.

BiscHOF, C., CARLE, A., HovLAND, P., KHADEMI, P. & MAUER, A. (1998). ADIFOR 2.0 Users’
guide, Tech. rep., Argonne National Laboratory, Argonne, IL., aNL/MCS-TM-192.

CoLemaN, T. F. & Morg, 1. 1. (1983). Estimation of sparse Jacobian matrices and graph coloring
problems, STAM J. Numer. Anal. 20(1), pp. 187-209.

CoLeman, T. F., Garsow, B. S. & Morg, J. 1. (1984). Software for estimating sparse Jacobian
matrices, ACM Trans. Math. Software 10(3) pp. 329-345.

CurTis, A. R, PoweLL, M. J. D. & Rem, J. K. (1974). On the estimation of sparse Jacobian
matrices, J. Inst. Math. Appl. 13, pp. 117-119.

Dickey, T. D. (2003). Emerging ocean observations for interdisciplinary data assimilation systems,
J. Mar. Syst. 4041 pp. 5-48.

Evizonpo, D., CAPPELAERE, B. & Faurg, C. (2002). Automatic versus manual model differentiation
to compute sensitivities and solve non-linear inverse problems, Computers & Geoscience
28, pp. 309-326.

Errico, R. M. (1997). What is an adjoint model?, Bull. Amer. Met. Soc. 78, pp. 2577-2591.

Evensen, G. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using
monte carlo methods to forecast error statistics, J. Geophys. Res. 99, pp. 10143-10162.

Giering, R. & KaMminskr, T. (1998). Recipes for adjoint code construction, ACM Trans. Math.
Software 24, pp. 437-474.

GiErRING, R. (2000). Tangent linear and adjoint biogeochemical models, in: P. KasiBHATLA, M.
HemanN, P. RAYNER, N. MaHOWAD, R. PRINN & D. HARTLEY (Eds.), Inverse methods in
global biogeochemical cycles, American Geophysical Union, pp. 33-48.

GRIEWANK, A. (2000). Evaluating derivatives, Vol. 19 of Frontiers in Applied Mathematics,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, principles and
techniques of algorithmic differentiation.

HomEescu, C. & Navon, I M. (2003). Numerical and theoretical considerations for sensitivity
calculation of discontinuous flow, Systems & Control Letters 48, pp. 253-260.

HossaIN, S. & STEIHAUG, T. (2002). Sparsity issues in the computation of Jacobian matrices, Tech.
rep., Department of Informatics, University of Bergen, report 223.

HOVLAND. P.. MoHAMMADI. B. & Bischof, C. (1998). Automatic differentiation and Navier-Stokes
computations, in: Computational methods for optimal design and control (Arlington, VA,
1997), Vol. 24 of Progr. Systems Control Theory, Birkhiuser Boston, Boston, MA,
pp. 265-284.

Marminsen, F., BiecLer, L. T. & Foss, B. A. (2004). A new oplimization algorithm with
application to nonlinear MPC, J. Proc. Cont. 14(8), pp. 853-865.

Navon, I. M. (1997). Practical and theoretical aspects of adjoint parameter estimation and
identifiability in meteorology and oceanography, Dyn. Ammos. Oceans 27, 55-79.

NOCEDAL, J. & WRIGHT, S. J. (1999). Numerical optimization, Springer-Verlag, New York.

Park, S. K., DROEGEMEIER, K. K, & BiscHOF, C. H. (1996). Automatic differentiation as a tool for
sensitivity analysis of a convective storm in a 3-D cloud model. in: M. BERZ. C. BISCHOF,
G. Coruiss & A. GRIEWANK (Eds.), Computational differentiation: Proceedings of the 2nd
International Workshop held in Santa Fe. NM. February 12-14, 1996. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, pp. 205-214, techniques, applications,
and tools.

ROBINSON, A. R, LErmusiaux, P. F. J. & Sroan 111, N. Q. (1998). Data assimilation, in: K. H.
BrINK & A. R. RoBINSON (Eds.), The sea, Wiley, NY., pp. 541-594.

SLAGSTAD, D. & McCLiMaNS, T. (2005). Modelling the ecosystem dynamics of the Barents Sea
including the marginal ice zone: 1. Physical and chemical oceanography., J. Mar. Syst.
Submitted.

THUBURN, J. & HAINE, T. W. N. (2001). Adjoints of nonoscillatory advection schemes, J. Comp.
Phvs. 171, pp. 616-631.

