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Some proofs concerning a subspace identification algorithm are presented. It 1s
proved that the Kalman filter gain and the noise innovations process can be
identified directly from known input and output data without explicitly solving
the Riccati equation. Furthermore, it is in general and for colored inputs, proved
that the subspace identification of the states only is possible if the deterministic
part of the system is known or identified beforehand. However, if the inputs are
white, then, it is proved that the states can be identified directly. Some alternative
projection matrices which can be used to compute the extended observability
matrix directly from the data are presented. Furthermore, an efficient method for
computing the deterministic part of the system is presented. The closed loop
subspace identification problem is also addressed and it is shown that this problem
is solved and unbiased estimates are obtained by simply including a filter in the
feedback. Furthermore, an algorithm for consistent closed loop subspace estima-
tion is presented. This algorithm is using the controller parameters in order to
overcome the bias problem.

1. Introduction

A complete subspace identification (SID) algorithm are discussed and derived in
this paper. The derivation presented is different from the other published papers on
subspace identification, Van Overschee and De Moor (19934), Larimore (1990),
Viberg (1995) and Van Overschee (1995) and the references therein, becausc we are
using general input and output matrix equations which describes the relationship
between the past and the future input and output data matrices.

One of the contributions in this paper is that it is shown that the Kalman filter
model matrices, including the Kalman gain and the noise innovations process, of a
combined deterministic and stochastic system can be identified directly from certain
projection matrices which are computed from the known input and output data,
without solving any Riccati or Lyapunov matrix equations. This subspace method
and results was presented without proof in Di Ruscio (1995) and Di Ruscio (1997).
One contribution in this paper is a complete derivation with proof. A new method
for computing the matrices in the deterministic part of the system is presented. This
method has been used in the DSR Toolbox for Matlab, Di Ruscio (1996), but has
not been published earlier.

Furthermore, it is pointed out that the states, in general (i.c. for colored input
signals), only can be computed if the complete deterministic part of the model is
known or identified first. This is probably the reason for which the state based
subspace algorithms which are presented in the literature does not work properly for
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colored input signals. The SID algorithm in Verhagen (1994) works for colored input
signals. The stochastic part of the model is not computed by this algorithm. The
N4SID algorithm in Van Overschee and De Moor (1994) works well and only for
white input signals. The stochastic part of the model is computed by solving a Riccati
equation. However, the robust modification in Van Overschee and De Moor (1995)
works well also for colored input signals.

The rest of this paper is organized as follows. Some basic matrix definitions and
notations are presented in Section 2. The problem of subspace identification of the
states for both colored and white input signals is discussed in Section 3.1. The
subspace identification of the extended observability matrix, which possibly is the
most important step in any SID algorithm, are discussed in Section 3.2. It is proved
that the kalman filter gain matrix and the noise innovations process can be identified
directly from the data in Section 3.3. A least squares optimal method for computing
the deterministic part of the combined deterministic and stochastic system is pre-
sented in Section 3.4. Some topics and remarks related to the algorithm are presented
in Section 5. Numerical examples are provided in Section 6 in order to illustrate the
behaviour of the algorithm both in open and closed loop. Some concluding remarks
follows in Section 7.

2. Notation and definitions

2.1. System and matrix definitions
Consider the following state space model on innovations form

Xiv1 = A%+ Bug + Ce,, (N

Vi = DX+ Euy + Fe, 2)

where e, is white noise with covariance matrix E(e,ef ) = I,. One of the problems
addressed and discussed in this paper is to directly identify (subspace identification)
the system order, », the state vector %, € R", and the matrices (4, B, C, D, E, F) from
a sequence of known input and output data vectors, 14, € R and y,. € R™, respectively.
A structure parameter, g, is introduced so that g =1 when E is to be identified and
g =0 when E is a-priori known to be zero. This should be extended to a structure
matrix G with ones and zeroes, the ones pointing to the elements in E which are to
be estimated. This is not considered further here. Based on equations (1) and (2) we
make the following definitions for further use:

Definition 2.1. (Basic matrix definitions)
The extended observability matrix, O;, for the pair (D, A) is defined as

D

DA
Oidg K e Rfm ®n { 3)

DAI'—I

where the subscript i denotes the number of block rows.
The reversed extended controllability matrix, C¥, for the pair (4, B) is defined as

C!Y (4B A B .. BleR¥ @
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where the subscript i denotes the number of block columns. A reversed extended
controllability matrix, C3, for the pair (4, C) is defined similar to equation (4), i.e.,

C.;;'!:ef[Ai IC Ai ZC . C]EIRnxim (5)
e, with B substituted with C in equation (4). The lower block triangular Toeplitz
matrix, H¢, for the quadruple matrices (D, A, B, E)

E Oy O r B | T
DB E Opixr S |

H!Y| DAB DB E e 0,,,, |eRim=<@te—1r (6)
| DA"2B DA"®B DA*B ... E

where the subscript i denotes the number of block rows and i + g — 1 1s the number
of block columns. Where 0,,,., denotes the m x r matrix with zeroes. A lower block
triangular Toeplitz matrix H; for the quadruple (D, 4, C, F) is defined as

-F Omxm Omxm ree Omhm-
DC F O x S | S

HY pac DC F v Oy |ERim>im (7
| DAI-2C DAI3C DA*C ... F

2.2. Hankel matrix notation

Hankel matrices are frequently used in realization theory and subspace system
identification. The special structure of a Hankel matrix as well as some matching
notations, which are frequently used througout, are defined in the following.

Definition 2.2. (Hankel matrix)
Given a (vector or matrix) sequence of data

SER™ ™Y1 =0,1,2,... 1o 00+ 1,..., (8)

where nr is the number of rows in s, and nc is the number of columns in s,.
Define integer numbers t,, L. and K and define the matrix S, as follows

St Sto+1 Siet2 s Sk
def| Seg+1 Sio+2 Sig+3 - Stk wLnr ¥ Kne
St{:“:- = . E[H (9)
Sio+r—1 Sep+L SerL+1 -+ SyrLtKk-2

which is defined as a Hankel matrix because of the special structure. The integer
numbers /4, L and K are defined as follows:

® {, start index or initial time in the sequence, s, , which is the upper left block
in the Hankel matrix.

e L is the number of nr-block rows in Sy ..

e K s the number of nc-block columns in S, ;.. |
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A Hankel matrix is symmetric and the elements are constant across the anti-diagonals.
We are usually working with vector sequences in subspace system identification, i.c.,
s, is a vector in this case and hence, nc = 1. Examples of such vector processes, to be
used in the above Hankel-matrix definition, are the measured process outputs, y, € R™,
and possibly known inputs, i, € R". Also define

Y= yha ey ]TeR™ (10)

which is refereed to as an extended (output) vector, for later use.

2.3. Projections

Given two matrices 4 e R*** and B € R/**. The orthogonal projection of the row
space of A onto the row space of B is defined as

AIB= ABT(BB")'B (11)

The orthogonal projection of the row space of 4 onto the orthogonal complement
of the row space of B is defined as

AB* =A— AIB=A— ABT(BB")'B (12)
The following properties are frequently used

R
i -

Prof of equations (13) and (14) can be found in e.g., Di Ruscio (1997b). The Moore-
Penrose pseudo-inverse of a matrix 4 eR** where k>i is defined as
A'=A"(AA") . Furthermore, consistent with equation (12) we will use the
definition

B* —1,— B"(BBT)'B a5)
throughout the paper. Note also the properties that (B*)" = B' and B*B* = B*.

3. Subspace System Identification

3.1. Subspace identification of the states
Consider a discrete time Kalman filter on innovations form, i.e.,

fk+1=Af&+Buk+K8,‘ {16)

Jr’t =ka+Euk +£* (17)

where x,€R" is the predicted state in a minimum variance sense, £¢€R™ is the
innovations at discrete time k, i.e., the part of y, e R™ that cannot be predicted from
past data (i.e. known past inputs and outputs) and the present input. Furthermore,
P = DX, + Eu, is the prediction of y,, and ¢, is white noise with covariance matrix
A = E(g, & ). Here &, = Fe, is the innovations and the models (1) and (2) are therefore
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equivalent with the Kalman filter equations (16) and (17). Furthermore, we have that
K=CF ! and A= E(gef) = FF", when F is non-singular, i.e., when the system is
not deterministic and when the Kalman filter exists.

A well known belief is that the states is a function of the past. Let us have a lock
at this statement. The predicted state at time k:=1, +J, i.e. X, of a Kalman filter
with the initial predicted state at k:= 1, i.e. %, given, can be expressed as

x-ln“'.f:éjylol} +C'$ul'oi.’ +(A_KD)J£I0 (]8)

where C5 = C{A4 — KD, K) is the reversed extended controllability matrix of the pair
(A—KD,K), C4= Cy(A4— KD, B— KE) is the reversed extended controllability mat-
rix of the pair (4 — KD, B — KE) and x,, is the initial predicted state (estimate) at the
initial discrete time f,. See equation (5) for the definition of the reversed controllability
matrix. J is the past horizon, i.e., the number of past outputs and inputs used to
define the predicted state (estimate) X, , ; at the discrete time 7, + J.

Using equation (18) for different #,, i.e. for to, to+ 1, fo+2, ..., 1o + K—1, gives
the matrix equation

Xigrs=Ci¥,gs + C3Upps + (4~ KDY'X,, (19)

where
Xiss = Figrs Fgsarr --- Kegrsrk—1]ER™K (20)
Xig= Ry Fegr1 --o Figrx—1]ERTE (21)

where K is the number of columns in the data matrices. Note that K also is equal to
the number of vector equations of the form equation (18) which is used to form the
matrix version equation (19). Note also that the state matrix X,, can be eliminated
from equation (19) by using the relationship

Y10 =0,X, +HJUy y4g—1 +HSE ) 5 (22)

which we have deduced from the innovations form, state space model (1) and (2).
Putting £y =: ¢, + J in equation (22) gives

Yiioie = OuXyghs + H{ U+siprg-1 T HLE 41 (23)

Using equation (19) to eliminate X, , , in equation (23) gives a matrix equation which
relates the future data matrices Y, .10, U+sir+g—1> Fio+sr @and the past data
matrices Y'Df-r’ U,"”, E‘U” .

The data is usually defined at time instant (or number of observations)
k=1,2.....N. Hence, t, = 1 in this case. However, we are often defining ¢, = 0 which
corresponds to data defined at k=0, 1...., N — 1. The bar used to indicate predicted
state is often omitted. Hence, for simplicity of notation. we define the following from
equations (19), (22) and (23),

Yors=0,Xo+ H{Ug s1g-1 + H3E; (24)
X;=C5Y + C'gUou +(4 —KD)'X, (25)

Yie=0.X,+HiUypig 1+ HLE; L (26)
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for lather use. Furthermore, equations (26) and (25) gives

UJILig-l
Yyn=[Hi 0.C5 0.L35]| Uops + 0, (A— KDY Xo + H E;,  (27)
YO]J

Equation (27) is important for understanding a SID algorithm, because, it gives the
relationship between the past and the future. Note also the terms in equation (27)
which are ‘proportional’ with the extended observability matrix O;. From equation
(27) we see that the effect from the future inputs, Uy ., ;, and the future noise,
E;|;, have to be removed from the future outputs, ¥, ,, in order to recover the
subspace spanned by the extended observability matrix, O,. A variation of this
equation, in which the term X is eliminated by using equations (22) or (24) is
presented in Di Ruscio (1997b). Note also that equations (25) and (24) gives

w puy| Uoir .
X;=[P; Pi] _PJEou (28)
o7
Pi=C% —(A—KD)' O H¢ (29)
Py =C54(A4— KDY O} (30)
P§=(A4—KD)'OYH* 31)

where we for the sake of simplicity and without loss of generality have put g= 1.
Equation (28) is useful because it shows that the future states X} is in the range of a
matrix consisting of past inputs, Uy, and past outputs, ¥, , (in the deterministic
case or when J— o0). Note that we have introduced the notation, P%, in order to
represent the influence from the past inputs upon the future. Combining equations
(28) and (26) gives an alternative to equation (27), i.e. the ‘past-future’ matrix
equation.

Unpig-1
Yyo=[H{ OP5 O,PY]| Uy, —OLP3Eq ;+ HLE; (32)
Yors

The two last terms in equation (32) cannot be predicted from data, i.e., because E,
and E,,, are built from the innovations process e,.

It is important to note that a consistent estimate of the system dynamics can be
obtained by choosing L and N properly. Choosing L, <L where L, =
n+ rank(D) — 1 and letting N — o0, is in general, necessary conditions for a consistent
estimate of the dynamics. See Section 3.2 for further details.

On the other side, it is in general, also necessary to let J— oo in order to obtain
a consistent estimate of the states. The reason for this is that the term (4 — KD)’ =0
in this case. Hence, the effect of the initial state matrix X, on the future states X, has
died out. We have the following Lemma.
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Lemma 3.1. (Subspace identification of the states)
Let K— oo in the data matrices. The projected state matrix is defined as

zju_
UliL+g-1 UsiL+g-1
X, Uou =OJTL YJlL U0|.r _Hf.UJ|L+g—1
YOl J YO | ¥ (33)
.'I UJ’l L+g-1
=C5Y015+ CUp s + (A~ KDY’ X, [| Uoys
YOIJ
Consider the case when
UJ'L +g—1
(A—KD)’ X, || Uos =0 (34)
Yo s
which is satisfied when J— oo and (4 — KD) is stable. This gives
Usirvg-1
X, Uou =X (35)
Yo
and hence we have, in general, the following expression for the future states
Zi
L{”L-+g— 1
XJ= OI YJ’lL Uou _—H.If..DFJ’TL+_q—I (36)
YOIJ’
Proof 3.1. The proof is divided into two parts. O
Part 1. The relationship between the future data matrices is given by
YJ|L'_0LXJ+H2UJILPQ 1+ HLE; ), (37)

Projecting the row space of each term in equation (37) onto the row space of

UJ|L+g— 1
UOlJ
Y(JJJ
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gives
UsiLig—1 Unr+g-1
Y !| Uos =0 X, || Uos +HEUJ|L+g—l+dE1 (38)
You YOIJ

where the error term is given by

dEl = HiE.IlL U0|J (39)

It make sense to assume that future noise matrix Ej |, is uncorrelated with past data
and the future inputs, hence, we have that (w.p.1)
lim dE,=0 (40)

K=o

Part 2. Equation (25) gives the relationship between the future state matrix X, and
the past data matrices. Projecting the row space of each term in this equation onto
the row space of

UJ|L+g—l
Uo[.r
YD[J
gives
UJlLrg 1 UJ|L+9—-1
XJ‘ Uou = jYOIJ + CgUolJ +(A _KD)JXD Uou (41)
You You

Letting J— oo (or assuming the last term to be zero) gives
/ L"I'JIL tg—1
X; [ Uoys =C'}You‘| C"}Uou 42)

Letting J— oo and assuming the system matrix (4 — KD) for the predicted outputs
to be stable in equation (25) shows that

X.r:é‘}you"‘ égUou (43)
Comparing equations (42) and (43) gives
Usipeg-1
X;=X; Uou (44)
Yois

Using equation (44) in equation (38) and solving for X gives equations (36). |
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The condition in equation (35) is usually satisfied for large J, i.e., we have that
lim,. (A4 —KD)"=0 when 4 — KD is stable. Note also that the eigenvalues of
A — KD usually are close to zero for ‘large’ process noise (or ‘small’ measurements
noise). Then, (4 — KD)’ is approximately zero even for relatively small numbers J.
We will now discuss some special cases

Lemma 3.2. (SID of states: white input)
Consider a combined deterministic and stochastic system excited with a white
input signal. Then

UJ]L+Q— 1

XJ'— OI.YJIL Uou U.f|L-+g—1 (45)

when J— co.

Proof 3.2. This result follows from the proof of Lemma 3.1 and equation (36) and
using that

XJUJL|L+Q—1 =X, (46)
when w, is white and, hence, X,/Uj ., 1=0. ]

Lemma 3.3. (SID of states: pure stochastic system)
Consider a stochastic system. Then we simply have that

XJ=O}_YJLL!YOIJ (47)
when J— oo or when (4 — KD)' X,/ Y, ;=0 is satisfied.

Proof 3.3. This result follows from the proof of Lemma 3.1 by putting the measured
input variables equal to zero. O

Lemma 3.1 shows that it is in general (i.e. for colored input signals) necessary to
know the deterministic part of the system, i.e., the Toepliz matrix H{ in equation
(36). in order to properly identify the states. This means that the matrices B and E
in addition to D and A has to be identified prior to computing the states. Le. we
need to know the deterministic part of the model. However, a special case is given
by Lemma 3.2 and equation (45) which shows that the states can be identified directly
when the input signals is white. Note also that the extended observability matrix O,
is needed in equations (36) and (45). O, can be identified directly from the data. This
is proved in the next Section 3.2, and this is indeed the natural step in a SID
algorithm.

In the case of a white input signal or when J — oo then, H¢, and the state matrix,
X,. can be computed as by the N4SID algorithm, Van Overschee and De Moor
(1996). From equations (28) and (32) we have the following lemma

Lemma 3.4. (States, X, and Toepliz matrix Hf: N4SID)
The following LS solution

UjiLtg-1
[Hi O OPY]= Y| Uops +dE (48)
Yois
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holds in:

(i) The deterministic case, provided the input is PE of order J+ L + g — 1. The
error term, dE = 0, in this case.
(i) When J— o0, and the input is PE of infinite order. The error term, dE =0,
in this case.
(iii) A white u, gives a consistent estimate of H¢ irrespective of J > 0. However,
O, P} and O, P% are not consistent estimates in this case. The first
mL x (L + g)r part of the error term, dFE, is zero in this case.

Hence, under conditions (i) and (ii), O, P} and O, P% can be computed as in equation
(48). Then the states can be consistently estimated as

. T

X;= OHOLP; O.P}] (49)
Yoiu

provided conditions (i) and (ii) are satisfied, and O} is known.

Proof 3.4. The PE conditions in the lemma are due to the existence of the LS
solution, i.e., the concatenated matrix

has to be of full row rank. From equation (32) we have that the error term in the LS
problem is

Usipig—1 ' Upj1g-1
dE=(—O.PSEg ; + HLE; )| Uos =— O, PiEg ;| Uois (50)
Yors Yois

It is clear from equation (31) that the error term dE =0 when J— oc. This proves
condition (i) in the lemma. Furthermore, the error term, dE =0, in the deterministic
case because E, ;=0 in this case. This proves condition (ii). Analyzing the error
term, dE, for a white input shows that the error term is of the form

dE =[0p1 v +qy dE;, dE;] (61}

where the dE, and dE, are submatrices in dE different from zero. Note that dE, =0
for strictly proper systems, g =0, when u, is white. This proves condition (iii).

The states can then be computed by using equations (28) or (43), provided
conditions (i) or (ii) are satisfied. |

One should note that in the N4SID algorithm the past horizon is put equal to the
future horizon (N4SID parameter (7)). In order for the above lemma to give the same
results as in the N4SID algorithm we have toput i=L+ 1, J=L+landg=1, i.e
so that J+ L =2L+ | =2i. Note that this last result does not hold in general. It
holds in the deterministic case or when J— oo, The extended observability matrix O,
can be computed as presented in the next section.

3.2. The extended observability matrix

An important first step in the SID algorithm is the identification of the system
order, n, and the extended observability matrix O, . ,. The reason for searching for
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O, ., is that we have to define 4 from the shift invariance property, Kung (1978), or
a similar method, ¢.g. as in Di Ruscio (1995). The key is to compute a special
projection matrix from the known data. This is done without using the states. We
will in this section show how this can be done for coloured input signals.

Lemma 3.5. (SID of the extended observability matrix)
The following projections are equivalent

I
I UJ|L+g

Zyp1= YJ‘[L+1/ Ugs UjiLtg (52)
Yous

U,
ZJILw‘ 1 =(YJ’|L+1Uf{L+g)/(|:YmJ:|Uj_|L+g) (53)
olJ

U,
ZJ|L+1=YJ|L+1/(|:Y0”:|UJ]|L'9) (54)
o|J

Furthermore, Z;; ;, is related to the extended observability matrix Oy, as
Z.mr.+1_'01.r1)(:“ir (55
where the ‘projected states’ X can be expressed as

ll L.”L-J—g
X5= XJ/ Uou D’j_ll.-‘—g (56)
Yois
UJlLig
=| C4Uo1s+ C5¥o1, —(A—KDY'Xo || Ugys | |Udjess (57)
YOIJ’
UJ]L+§ !
= XJ‘*(A_KD)JXO Uou UJlu.iy (58}
You
UJILrg
You

Furthermore, the column space of Z,, ., coincide with the column space of O, .,
and n =rank(Z,,, ,,) if rank(X§) =n.

Proof 3.5. The proof is divided into two parts. In the first part of equations (52)
and (55) with the alternative expressions in equations (56) to (58) are proved. In the
second part the equivalence with equations (52), (53) and (54) are proved.
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Part 1. Projecting the row space of each term in equation (26) with L:= L 4 1 onto
the row space of

UsiLig-1
Uy
YOlJ
gives
Usirig-1 Uniig
Yyee1 [} Uos =0p1X; || Ugs +Hi  Upjpag—1 +dE; (60)
Yois [ LYo1s

where we have used equation (13). Then, w.p.1
Klim_ dE, =0 61)

where the error term, dE|, is given by equation (39) with L:= L + 1 . Removing the
effect of the future input matrix, U; ;4,-1, On equation (60) gives equations (52)
and (55) with X9 as in equation (56).

Furthermore, projecting the row space of each term in equation (25) onto the
row space of

UJ’IL+9—]
UOlJ
Yois
gives
UJlng 1 UJ’fL#g 1
X[ Uoys =C5Yo1s +C5 Uy +(A—KDY' X, || Ugys (62)
Yoiu Yois

From equation (25) we have that
C3Yoys+ CiUo 1y =X, —(A—KD)' X, (63)
Combining equations (60), (62) and (63) gives equations (52) and (57)-(58).

Part 2. It is proved in Di Ruscio (1997) that

§ R i
Zjp+i= Y.r[:,-i-:f[p;!L+g] TIL+g (64)

= Ynu 1 Ufu_ | gWT(WUj_{L g WT) : WU..III,{,-I-Q

U{) | F ]
W= (65)
[ Yo
Using that Uj;,.,Ufi1+, = UjjL+, In equation (64) proves the equivalence between
equations (53), (54) and (52). O

where
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Lemma 3.6. (Consistency: Stochastic and deterministic systems)
Let J— oo, then

ZJlLrl_—OLuXJU.i!]Lrg (66)

where Z;,, ., is defined as in Lemma 3.5. A sufficient condition for consistency, and
that O, , , is contained in the column space of Z;|, ,,, is that there are no pure state
feedback.

Proof 3.6. Letting J— oo in equation (58) gives (66). This can also be proved by
using equation (44) in equation (56). Furthermore, if there are pure state feedback
then X; U3y, ., will lose rank below the normal rank which is 7. |

Lemma 3.7. (Deterministic systems)
For pure deterministic systems we have that equation (66) can be changed to

Zirs1="Ysr11 Uj‘l[.-l—g =0L+1XJUJL|L+9 (67)

The extended observability matrix Oy ., can be computed from the column space of
Yy11+1UijL+,- Furthermore, one can let J =0 in the deterministic case.

Proof 3.7. This follows from equation (66) and Lemma 3.5 by excluding the
projection which removes the noise. O

Lemma 3.8. (Stochastic systems)
For pure stochastic systems we have that equation (66) can be changed to

Zyper1= YJIL!I’Y0[J=OL+1XJ (68)

The extended observability matrix Oy, , can be computed from the column space of
YJ’IL + IIYOIJ'

Proof 3.8. This follows from equation (66) and Lemma 3.5 by excluding the input
matrices from the equations and definitions. O

3.3. Identification of the stochastic subsystem

We will in this section prove that, when the extended observabilit matrix is known
(from Section 3.2), the kalman filter gain matrix and the noise innovations process
can be identified directly from the data.

Lemma 3.9. (The innovations)
Define the following projection from the data

UJ|L+g UJ'IL-ig
Zill.ﬂ = YJII.+1 - YJ1L+1 Uou = YJlu 1 Uau (69)
/ You Yau

Then w.p.1 as J— 0
Zju,« 1= Hi k1 EJ|L+1 (70)
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Hence, the Toeplitz matrix H3,, (with Markov matrices F, DC, ..., DA*~ 'C) for
the stochastic subsystem is in the column space of
1
sz j’|L+ 1
since
1

T —
KEJlLrlEJILrl —ILfl *L+1

Proof 3.9. The relationship between the future data matrices is given by
Y= 0 X;+ HiUypsg—1 + HiEj1 (71)

Projecting the row space of each term in equation (71) onto the row space of

UJ'IL tg—1
Uoys
Yois
gives
UsiLvg—1 Usiig-1
Yy Uoys =0 X, [| Uops +H{Uy . rg-1+dE; (72)
Yois Yous
then, w.p.]
Klim_ dE, =0 (73)

where dE, is given in equation (39). Furthermore,

UJ’lL tg—1
Jl]m XJ Uolj = XJ (74)
Yois

where we have used equations (44) and (38). From equations (71), (72) and (74) we
have that

Uyipg-1
Yiie—=Yyo || Uos =HpE;L (75)
Yous
Putting L:= L + | in equation (75) gives equation (69). O

It is now possible to directly identify the matrices C and F in the innovations model
equations (1) and (2) and K and A in the Kalman filter equations (16) and (17). Two
methods are presented in the following. The first one is a direct covariance based
method for computing K and A and the second one is a more numerically reliable
‘square root’ based method for computing C and F,
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Lemma 3.10. (Correlation method for K and A)
Define the projection matrix Z3, ., as in equation (69) and define the correlation
matrix

1

ALu:Eziuﬂ(Ziun)T=Hi+1(Hi+-|)T (76)
where the Toepliz matrix Hj ,; can be partitioned as
F Omx Lm
HS +1 — ??
e [OLC HS ] 7
where C= KF. Hence, equation (76) can be written as
Ay Ay FF* FOo.O)F
a[.i 1= = T T T (?8)
Ay Ay O.CF" 0, ((0,C) + Hi(H})
From this we have
Egel)=FF' = A, (79)
and
K=CF ! =OI{A21A1_11 (80)
Lemma 3.11. (Square-root method for C and F)
The LQ decomposition of
1
=
\fK +1
gives
1
\/—K,anu 1 = R330; (81

Then, the Toeplitz matrix Hj , |, and the Markov matrices F, DC, ..., DA"~ 1, are
given directly by
Hi iy =Ry (82)

F can be taken as one of the diagonal m x m block matrices in R5, e.g. the lower
left sub-matrix, i.e.

F=Rs;(Lm+1:(L+ Dm, Lm+ 1:(L+ )m) (83)
Furthermore,
O,C=Rayz(m+ 1:(L+ Dm, 1:m) (84)
The system matrix C is given by
C=0}0;C= 0O} Rys(m + 1:(L+ )m, 1:m) (85)

The Kalman filter gain matrix and the innovations covariance matrix are given by

K=Cr!
(86)
= O}Ry3(m+ 1:(L+ Um, L:m)Ry3 (Lm + 1:(L + Dy, Lm + 12 (L + 1)m)

A=FFT &7
O
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3.4. SID of the deterministic subsystem

The parameters in the B and E matrices can be computed from an optimal least
squares problem. A solution to this is given in the following

Lemma 3.12. (Extended state space model)
The states can be eliminated from the state space model equations (1) and (2) to
yield the so called Extended State Space Model (ESSM)

YJ+1|L=2LYJ|L+ §LUJ|L+Q+CLEJ|L+1 (88)
where
A, E0.,4(070,) 'O € [REm > Lm (89)
B, [0,B HI—AJH! 0] eREm¥E*or (90)
EE(0C Hi)~AifH] Oppyp] €REETDT o1

Proof 3.10. Putting J=:J+1 in equation (37) and substituting X;,,=A4X,+
BU, + CE, into this equation gives

Yiiin=0,4X,+[0.B H{)Uj p4g +[0.C HiEj 41 (92)
Equation (37) can be solved for X, when (4, D) is observable, i.e.,
XJ=OI.(YJ|L—HdLUJ|L+g—1“Hi.EnL) (93)

where O} =(0%0,) 'O is the More-Penrose pseudo inverse of O,. Substituting
equation (93) into equation (92) gives equations (88)—(91). O

Lemma 3.13. (Projection matrix for the deterministic subsystem)
Define the projection matrix

Zju,, 1= YJ|L+1 Uou (94)

This matrix can be partitioned into matrices Z%,,,, and Z§,; which satisfy the
deterministic model

Z§+1|L=3L25|L +BLUy L4g (95)

Proof 3.11. This follows from equations (88) and (13) and that

UJ'I,Lig
x]j—{]:o CLEJILP 1 Uy =0 (96)
Yois

when the future inputs, Uy, ., the past data, Uy, and Y, ,, are all independent of
the future noise term, C,E; ;. ;- O
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Lemma 3.14. (SID of the system matrices B and E)
Define from equation (95) the linear equation
Y =B
where

From equation (97) a least squares problem
n'}ig | % — B,(B,E)¥ ||?

for the unkown elements in B and E are defined as

—

which can be solved for the unknown parameters as

B
vec(I: ])= Ztvec(# )
E

where 1 = (2 "2)” ' . The matrix & is defined as follows

L+tg
e Z R ® (E; 1_A7LEJ')EHMKX(“+W)'

i=1

141

©7)

(98)

99)

(100)

(101)

(102)

(103)

where ® denotes the Kronecker tensor product. The matrices R; and E; are defined

in the following. The matrices
ReR>**Vi=1,...,L+g
are r-block rows in the % e R * 97K matrix. 1.e. extracted from
R,
U=\ :

RL +g
The matrices

Ei IERme(n+mg}V!'= ]“”’L+g

are defined as follows:
Ey= IOL Opmxmls Ep+t =0Lm><(n+ m)

-Omxn Imxm- -{}mxn Omxm- —Omxn
D Omxm Omkn Imxm Omxn
El DA Omxm » E2= D Omxm * EL= Omln
| DAY "2 O | DAY ™3 0,0 | 0,1

The matrix I, ., denotes the m x m identity matrix.

Omxm
Omxm

m*m

LU -

(104)

(105)

(106)

(107

(108)
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Proof 3.12. From equation (90) we have that B, is a linear function of B and E
when A4 and D are given. The matrix 2 in the LS problem equation (101) is defined
from B;% by using the identity

vec(AXB) = (BT ® A)vec(X) (109)
O

Note that the number of columns in % and #, which is defined in equations (98) and
(99), can be reduced to K=:(L + g)r by post-multiplying both equations (98) and
(99) with U}] L+4- However, this does not affect the estimates of B and E but will in
general reduce the computation. Another variant, which should be preferred for
numerical reasons, is to define % and % from the R matrix provided by the RQ/LQ
decomposition. This will also reduce the number of columns to K=:(L + g)r in
Lemma 3.14.

Note that only a matrix of size (n + gm)r x (n + gm)r has to be inverted (i.c., the
matrix Z 74 in the LS solution equation (102)) in order to solve for the unknown
parameters in B and E. This method combined with the LQ decomposition is found
to be very efficient. The method in Lemma 3.14 require only that the input is exciting
of order »n + gm, and hence, independent of the user specified parameters L and J.
This is consistent with the lower bound on the order of persistence of excitation for
consistent estimation of an nth order possibly proper (g = 1) linear system.

Note that the alternative strategy of first solving for B, in equation (95) and then
extracting B and E would require the inversion of an (L + g)r x (L + g)r matrix
UjiL+9UJ L+e- This matrix may be singular for colored input signals, and hence is
not preferred.

4. Closed loop subspace identification
We have in Section 3.2 shown that the extended observability matrix O, , can

be estimated from the column spacc of the projection matrix Zy; ,, as defined in
equation (52). Let us look at the error term in this projection. We have

Zjip1 =0 Xj+dZ (110)
The error term dZ is given by

/ Ujps
dZ:Hi‘I(EJlL‘l/[u‘:L g:I)UJ!IL.pg

=Hy i Eyea Ui g W WU g W) WU L, (111)

R —Hy  EypandUs sy, WT(WU.#]U g wTy” lWU}rL g

where W is defined in equation (65). We have in the last expression in equation (111)
used that E;,, ., WTIK~0 when the number of columns K tends to infinity. The
remaining projection in the error term is then E;,, , /Uy ., ,. This term will also be
approximately zero for open loop and many closed loop problems, which will be
pointed out in the following. However, the term E;, , ,/U,,, ,, may be non-zero and
cause biased estimates for feedback systems in which the control is directly propor-
tional to the innovations noise. We will in the next section discuss how to overcome
this problem. We will also stress that biased estimates may be more reliable than
estimates from an unbiased algorithm because the variance may be small. This is
illustrated in the section of examples.
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4.1. Closed loop subspace identification: Using a filter in the feeback loop!

Since we are allowing the inputs to be colored the question whether it is possible
with feedback in the inputs have to be pointed out. An external (dither) signal, i.e.,
a reference signal, should be used to excite the system when collecting data for
subspace identification. The natural excitations from process disturbances are often
insufficient. The SID algorithm works perfect for closed loop deterministic systems.
Our simulation results also shows that the results may be good even for combined
deterministic and stochastic systems, however, the results depends on the dither signal
or the signal to noise ratio. If the signal to noise ratio is low then there may be a bias
in the estimates. However, the variance may be small. There may also exist an
‘optimal” dither signal which gives very accurate subspace estimates (small bias and
small variance) even for systems with a large signal to noise ratio. This will be
illustrated in Example 6.4. A white noise or random binary signal in the reference
usually gives very good closed loop identification results. Furthermore, 2 minimum
of measurements noise is, as always, to be preferred in order to obtain good closed
loop estimates.

It is believed that SID of systems with state feedback or feedback from Kalman
filter states would work well, provided an external dither signal is introduced in the
loop. The reason for this is that the states are ‘noise-free” and not correlated with the
innovations noise. There are no problems by using subspace identification methods
in these cases.

The key is to make the term Ej . /U, small, which is equivalent to making
the error term equation (39) small.

The (open loop) subspace identification methods may give biased estimates for
closed loop systems as in Figures | and 3 when the signal-to-noise ratio is low. The
reason for this is that the error term in equation (39) is not zero when the future
inputs, Uy, ;. are correlated with the future noise, E,, ;. Most of our simulations
shows that the bias in the DSR algorithm, due to noisy closed loop data, is less than
the bias in the other algorithms as N4SID, SUBID (Van Overschee and De Moor
(1996)), MOESP (Verhagen (1994)).

One of our solutions to the bias problem is to include a filter, e.g. a first order
low-pass filter, in the feedback path of the control system as illustrated in Figure 2.
This filter will eliminate the feedback problem when using subspace identification

Figure 1. Standard feedback system with reference signal. r;, controller represented with
w,=h,(z)(r,—y,) and the system represented with s, (z). Possibly process and measurements
noise are represented with v, and w,, respectively.
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h £(z) -

!
|
|

Figure 2. Feedback system with a filter in the feeback loop in order to eliminate problems

with feeback in the data when using subspace identification algorithms. Here, 1, is the control/

input signal, y, the output signal and r,, is the reference signal. The controller is represented

with 1, =h, (2)(r,— 7, ) where §, =h(z)y; is the filtered output. The system is represented with

the transfer function 4,(z). The controller is represented with the transfer function #.(z) and

the filter is represented with the transfer function h,(z). Possibly process and measurements
noise are represented with v, and w,, respectively.

0 k | i rk __ uk y_k
—_— h_x(z) ’ . —_— h_piz) !
| | \ e

v

h_ciz) g

Figure 3. Alternative feedback system with reference signal, r,, controller represented with
u,=r,—h{(z)y, and the system represented with /,(z). Possibly process and measurements
noise are represented with v, and w,, respectively.

algorithms. Hence, the input and output data, #, and y,, can be used directly to
identify a state space model of the system. The reason for this is that the input is no
longer directly proportional to the measurements noise wy, in the output y;, = Dx; + w,
(or the innovations e, in the output y, = Dx, +¢,). This solution to the feedback
problem will be illustrated in Example 6.3.

Note that the control system in Figure 2 is a special case of the more general
control configuration in Figure 3.

Note that SID algorithms are very useful for model predictive control in which
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the control input signal often is the reference signal to some local controller for the
process. Hence, the SID algorithm are used to identify the closed loop model from
the reference signal to the output. In this case we do not have problems with feedback
in the data.

4.2. Closed loop subspace identification: Using the controller

The knowledge of the controller or the reference signal can be used to obtain
consistent subspace identification algorithms for closed loop systems. Consider a
linear state space model of the controller in Figure 1, i.e.

Xir1 = Axi + Bry—w) (112)
U= DX + E{ry — ) (113)

where 4, eR"™"", B eR"*™, D.eR™™ and E.eR™™ is the state space model
matrices of the controller and xj € R" is the controller state vector. Note also that the
results which follows also holds for the control strategy in Figure 3.

‘We will in the following assume that the controller is linear and that the quadruple
(4., B, D, E) matrices in addition to the input and output data, u, and y,, are
known. One should also note that the linear controller matrices can be exactly
identified if ry, 4, and y, are known. The problem of identifying the controller is
deterministic and one can in this case petfectly identify (A, B..D_, E,) by using
r.— ¥ as inputs and u, as outputs by using e.g. the DSR subspace algorithm
(provided that noise-free r’s and 14,’s are given).

Consider the following matrix equation obtained from the state space model
equations (112) and (113) of the controller in Figure 1, i.e.

Uy =0 X5+ Hi(Ryy, — Yo 1) (114)

We will now adopt the idea in Van Overschee and De Moor (1997) and define a
signal/matrix M, from equation (114) which is orthogonal to the future noise
matrix Ej g as

der C T C
My = Uy e+ H Y, =0 X5+ HiR; (115)

The signal/matrix equation (115) was introduced by Van Overschee and De Moor
(1997) in order to solve the bias problem in the subspace identification algorithms.

Note also that a similar signal can be defined from the control system in Figure
3. The only difference is that the right hand side of equation (115) becomes
R; . — O.Xj5 in this case. This matrix is also orthogonal to the future noise and the
closed loop subspace identification algorithm which will be presented in the following
thus holds for both control systems as presented in Figures 1 and 3. The main point
of introducing M, |, is that

E-”L!M_”L =0 (116)
which holds if £, is orthogonal to both X5 and R, .

4.3. Closed loop subspace identification: Indirect method

We will in this section derive a consistent version of the closed loop subspace
identification algorithm which is presented in Van Overschee and De Moor (1997).
We have the following consistent projection lemma for closed loop subspace system
identification.
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Lemma 4.1. (Closed loop SID)
Given the following closed loop projection

MjjL+g
ZJ|L+| = YJ|L+1 Uou MJLlL+g (117)
/ Yo
Then, Z;, ;, is related to the extended observability matrix Oy, as
Zyp1=T '0Op 1 X5 (118)
where Te REF 1m *(L*m jq 5 Jower block Toepliz matrix given by
T=1Iy ., ym+ He, HS L, when g = 1 (119)
T=Ipiim+[Hics1Hivy Owsiym xm when g =0 (120)
Furthermore, the system order is given by
n=rank(Z;1+1) (121)
From the SVD
Zyjpvr=U S, VI + U,S, VY (122)

where the n large/dominant singular values are contained on the diagonal in §, and
the other zero/smaller singular values on the diagonal of S§,. Furthermore,
Ul = R(L F1ymxn and UzEH{L F 1L ((L+ 1m n]_

From this we have the estimate

T '01,,=U, (123)
Furthermore, the ‘autonomous’ states are determined as X§ =S, V1.
Proof 4.1. A simple proof is given as follows. From equation (26) we have
Yipe1=O0pi1 X+ Hi Usjpig+ Hio 1By (124)

Adding H{ . H$ . Y.+, on both sides of equation (124) and using the definition
in equation (115) gives

TY o1 =00 X+ Hi My g+ Hi 1 Ejppay (125)

where T'is as in equations (119) and (120). Since the matrix

is uncorrelated (orthogonal) to the future noise matrix £y, ., we have that
TzﬁlLll =OL11Xg+H‘I{-|lMJ|LF-g (126)
where

Z§|L+l = Yyr+1 || Uops (127)

and
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{I MJ'IL +g
X=X, [| Uoys (128)
/ YOlJ

The lower triangular matrix 7T is non-singular if I,, + £ E, is non-singular. Hence,
ZglL.+|=T_lOL+1X§+ T_lH‘;.+]MJ|L'I'g (129)

Post-multiplication of equation (129) with M j;, ,, proves equations (117)(119).
Furthermore we have that

UsZ5 1 =UIT" YH . My, (130)

where U, is the left singular vectors from the SVD of Z, |, ., ; which is related to the
‘zero/small’ singular values. Equation (130) is obtained by pre-multiplying equation
(129) with U} and using that 7710, , , = U, and UYU, =0.

Equation (130) is a linear equation of the elements in the lower block triangular
Toepliz matrix 7 'H{ , ,. The solution to this problem is an important step in the
closed loop subspace algorithm and therefore needs further discussion. In order to
do this we write equation (130) as

Y=UAMy,, U3n
where
Y =: U{Zj].[.+l (132)
o = Ug' (133)
x.dzerT_IHL L €REF Dmx(L g (134)

The matrix 5 is a lower block triangular Toepliz matrix with m xr blocks K;
Vi=1,...,L+ L. Hence, we can solve equation (130} (or equivalent equation (131)
in a least squares optimal sense for the parameters in #". An algorithm for doing
this 1s presented in Van Overschee and De Moor (1996b) Appendix C.

The problem of solving equation (130) is very similar to the least squares problem
in Section 3.4 for determining B and E for the open loop subspace problem.

Since Hf,, is known the matrix H{,, is simply obtained from .# as (when
g=1

HE i =% pyry—H g ) ! (135)

Finally, the extended observability matrix of the system can be obtained as (when
g=1
O, l:(I(L+1)m+H:.+1H:,+y)UI (136)

The system matrices 4 and D are then computed from O, , ,. The system matrices B
and E are computed from Hf ,, and O,.

The stochastic part of the system is determined very similar to the theory in
Section 3.3. The difference is that the projection matrix now is given by

MJ|L+g
Z.sn;,n = YJlLrl_ YJ|L+| Uou =T_1Hi+lEJ|L+1 (13?)
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The projection matrices Z, 1,1, Z5 1+ and Z5;,, can effectively be computed by
the LQ/QR decomposition.

The above ideas is among other details used to construct a MATLAB function,
dsr_cl.m, for consistent closed loop subspace identification.

4.4, Closed loop subspace identification: Direct method

A drawback with the above algorithm is that 7 and H¢,, have to be identified
before the extended observability matrix O, ., and the system matrices 4 and D
could be identified. We will in this section present a solution to the closed loop
subspace identification problem which is more consistent with the DSR subspace
algorithm in which Oy, , and 4 and D is identified directly in a first step. We have
the following lemma.

Lemma 4.2. (Direct closed loop SID)
The extended observability matrix O, , , is obtained from the following projection

Ziirr =Z5ierMypeg— Hy 1 Z5000)" (138)

=Z51tv1(Unpsg+ Hi 1 Z5)L41)" = Ops1 X5

where Z9,.,, and Z3,, ., are defined in equations (127) and (137). respectively.
Furthermore, B and E (or also H{ ,,) can be obtained from

Z.‘;Hﬁ-} . OL + 1 Xﬁ 4 Hf‘+ 1 (MJ'|L+g_ Hﬁ,+ 1 Zﬂil. 1 1) (139)
or from (as in the standard DSR algorithm) the equation
Zgilll.ll jLZJ]L=§I,(MJ[L+g_H11lZ.dHLil) (140}
Proof 4.2. From equation (126) we have that
I+ HS  HS  )ZS 00y =O0p i XS+ HE  (Myppsy (141)
Rearranging equation (141) gives
Zgll’,+l = OI’. +1 Xz: + f!‘;_‘ I(MJ‘IL+g _H1+gZ‘}II. 4 i} (142)
O

The closed loop subspace algorithm which is presented in this section is very similar
to the open loop subspace identification algorithm which is presented in Section 3.
The only difference is that the projection matrices are modified to incorporate the
Markov parameters of the controller (the Toepliz matrix Hf .

5. Further remarks

5.1. Choice of algorithm parameters

There are two parameters in the algorithm, i.e.,, L and J. L is interpreted as the
identification-horizon used to predict the number of states. J is interpreted as the
horizon (into the past) used to define instruments from the data which are used to
remove noise. The system order, n, which is specified or identified, is bounded by the
user-specified parameter L, i.. so that, | <n < mL where m is the number of outputs.
Hence, Lm singular values are computed by the algorithm and the user may chose
the system order by inspection of the non-zero singular values.
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A rule of thumb is that L should be chosen as small as possible if the inputs are
poorly exciting. The minimum identification-horizon, L,,,, so that the pair (D, 4) is
observable and rank(Oy, , ) =n is bounded by, [#/m] < Ly, <n—rank(D) + 1, where
[-] is the ceiling function, i.e., rounding towards plus infinity. If the outputs are
independent, then, we suggest to use L, =n—m+1 when n>m and L,,;,,=1 when
n=m. If the inputs are rich. e.g. white, then this point is not critical. In practice, it
is suggested that model validation on independent data is taken into consideration
when choosing the ‘optimal’ settings for L.

The past horizon, J, may for combined deterministic and stochastic systems and
for pure stochastic systems usually be chosen as J=L+1 or J= L. Note that the
estimates of C and the Kalman filter gain matrix K= CF " usually becomes better
when J increases. For pure deterministic systems we may chose J = 1. The instruments
Yo, and Up; can also be removed from the projections, i.e., and putting J =0, in
this case.

5.2. Choice of input signal

The subspace identification methods tends to be more sensitive to the input signal
compared to e.g, the Prediction Error Method (PEM). This means that there may
exist colored input signals which gives subspace estimates which are as optimal
(efficient and consistent) as the PEM estimates. On the other side there may exist
colored input signals where the subspace methods gives poorer results compared to
the PEM. An optimal experiment for the subspace methods is in general not a white
noise input, but rather a colored input signal where the frequency spectrum is
optimized to excite the parameters in the system as well as possible. Our experience
is also that an input signal which are minimizing the condition number of the Hankal
matrix Uy ; or Uy 4, is usually not an optimal input signal.

5.3. N4SID

The N4SID algorithms in Van Overschee and De Moor (1994) are using an
oblique-projection
C;= Y Ui WEHW, UL WY W, (143)

W.,=[U°"] (144)
Yo

for the identification of the extended controllability matrix O;, i.e., O; is estimated
from the column space of (; in equation (143), e.g. using the SVD. Comparing
equation (64) with equation (143) shows that the extra projection matrix Uj: are
missing on the left hand side of equation (143). Hence, we conclude that in general

C; # 0; X (145)
The consequence of this is that the subspace identification theorems in Van Overschee
and De Moor (1994), (1996), (1997) which are using the oblique projection, to our
understanding, are wrong.

The extra projection matrix U}j; on the left hand side of equation (143) removes
the influence of the future inputs on the future outputs, and is necessary in order to
obtain accurate/consistent subspace estimates for colored input signals. Hence, a
consistent projection is therefore

Zyi= OUk: = OX2US, (146)
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Hence, the extra projection can not be considered as a weighting matrix but as a
projection matrix. One should note that the parameter i used by N4SID is related to
the parameter L in DSR as i= L + 1. Furthermore, in N4SID the past horizon is
put equal to the future horizon. Hence, this corresponds to putting J=L +1=iin
DSR.

6. Numerical examples

6.1. Example 1
Given the system (1) and (2) with the following matrices and vectors

0 1 0.25 0.5
A= . B . o= 7] (147)
—-0.7 1.5 0.625 0.5

D=[1 0, E=1,F=1 (148)

The following colored input signals where used for identification

uy = sin(k) + sin (g), (149)
uy = sin(k) + sin (]2{) + sin (};) (150)
up = with noise with variance E(uf) = 1 (151)

The number of samples was N = 1000. The system was simulated 100 times, each
time with the same input but with a different noise realization e,. However, with the
same covariance F(ef) = 1. The DSR parameters where chosen as L. =2, J=3. The
model structure parameter where g=1. The poles of the 100 identified system
matrices are illustrated in Figures 4, 5 and 6. From this we conclude that the method
presented in this paper is almost as efficient as the PEM method, for the inputs which
are considercd. However, the N4SID oblique-method gives an unacceptable bias in
the pole estimates for input u}, i.e., because the estimated poles are unstable. From
Figure 5 we see that the bias is eliminated but the results from N4SID are highly
uncertain. However, the results from N4SID are nearly the same as DSR for the
white input signal ;. We also see that the variance of the subspace estimates may
be smaller for a colored input signal, Figure 5, than for the white noise input, Figure 6.

6.2. Example 2
We consider the following system
X 41 =A.x;‘+.Buk+Cl-’k (]52)
Ve =Dx; + wy (153)

where the system matrices are the same as in Example 6.1. The process noise, v,, and
the measurements noise, w,, are both white noise with standard deviation
VE(?) =/0.02 = 0.1458 and \/E(w?) = /0.002 = 0.0447, respectively. The system is
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Identified poles for a Monte carlo simulation. The exact pole is marked with a
cross. Input signal u} where used.
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Figure 6. Identified poles for a Monte carlo simulation. The exact pole is marked with a
cross.Input signal u; where used in this case.

operating in closed loop. The input to the system is generated by the following
discrete time Pl-controller

uy = K(ry = yi) + 2 (154)
where the controller state, z,, is defined by
Ky
Zp+r =+ T (re—yi) (155)

The proportional constant is K, = 0.2, the integral time is 7;= 5 and the reference,
7., is taken as the binary signal in Figure 7.

The number of samples was N = 1000. The system was simulated 100 times, each
time with the same reference, r,, but with a different noise realizations v, and w,, but
with the same variance. The DSR parameters where chosen as L =J=3 and the
structure parameter where g =0. The subspace algorithms works perfect in the
deterministic case. However, the algorithm gives a small bias in the estimates in the
case of noise. The bias is negligible for this example. The pole estimates are presented
mn Figure 8.

6.3. Example 3

Consider the same closed loop example as in Example 2. We will in this example
illustrate the bias-problem when using subspace identification algorithms directly
from input and output data collected in closed loop (Figure 1). Furthermore, we will
illustrate that the feedback problem can be eliminated by including a low-pass filter
in the feedback as in Figure 2.

The process noise, v,, and the measurements noise, w,, are both white noise with
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Reference, r,, input, u,, and output, y,
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Figure 7. The reference signal, ry, the input, u, and the output y, for two particular noise
realizations v, and wy, used in Example 6.2.
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Figure 8. The pole estimates from the closed loop data as described in Example 6.2.
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Figure 9. The pole estimates from the closed loop data as described in Example 6.3. The
control system is as in Figure 1 with the same reference signal as in Figure 7.

standard deviation \/E(vZ) = \/0.05 = 0.2236 and \.f{E(u’f) = \/(TUI = 0.1, respectively.
The pole estimates after a Monte carlo simulation is presented in Figure 9. We can
clearly see a bias in the estimates from the (open loop) subspace identification
algorithms. The bias in the DSR estimates is smaller than the bias in the estimates
from both SUBID (Van Overschee and De Moor (1996)) and N4SID. This is also
the conclusion from many other simulation experiments.

Consider now the feedback system in Figure 2. We are using a Pl-controller as
in Example 6.2 where the filtered output is used as input to the controller. The
controller equations are as follows.

=K, (r,—7) +z (156)
where the controller state, z,, is defined by
K
Zp41 =Zk+?’_](fx Jx) (157)
The filter is a 1. order low-pass filter of the form
Ferr =P+ Ke(yi— 1)

=(1 =K )i + Ky
with filter constant K, = 0.1. The initial filter output is taken as j, = y,. Pole estimates
after a Monte Carlo simulation is illustrated in Figure 10. We see that the pole
estimates now are consistent.

(158)

6.4. Example 4

We will in this example search for an optimal experiment in the reference. Consider
the reference r, = sin(wk) for varying frequency . The following investigation shows
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Figure 10. The pole estimates from the closed loop data as described in Example 6.3 with a
filter in the feedback. The control system is as in Figure 2.

that the bias in the DSR pole estimates is a function of the frequency and that the
bias reach a minimum for a particular frequency.

The reference signal which gave the smallest bias in the pole estimates is for this
example found to be

. 1
r=sin (1—5 % w) (159)

The pole estimates from an Monte carlo experiment is illustrated in Figure 11. The
results are very interesting because, as we see, the pole estimates from the DSR
subspace identification method is more reliable than the pole estimates from the
prediction error method PEM.

The process noise, v,, and the measurements noise, w;, are both white noise with
standard deviation \/E(v?) = /0.1 =0.01 and /E(w?)=./0.1 =0.01,, respectively.
The DSR parametersis L=5, g=0and J= 6.

7. Conclusion

The extended observability matrix O,,, can be computed directly from the
column space of a projection matrix Z;; , ;, which is defined in terms of the known
data. There are in general two projections involved in order to define Z;,; ,,. One
projection is used to remove the effect of noise and one projection is used to remove
the effect of future inputs from the future outputs. A necessary condition for a
consistent estimate of O, , is that the number of columns K in the data matrices
tends to infinity.
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Figure 11. The pole estimates from the closed loop data as described in Example 6.4 with
reference signal r, = sin(k/1.526). The control system is as in Figure 1.

The states are not needed in order to compute the extended observability matrix
and, hence, to identify the system dynamics, i.e., the number of states » and the
system matrices A and D.

An additional condition for a consistent state estimate is that the past horizon J
has to tend to infinity. Furthermore, for colored input signals both the extended
observability matrix O, and the lower block triangular Toepliz matrix H{ has in
general to be known in order to properly computing the states.

The stochastic part of the model, ie., the Kalman filter gain matrix and the
innovations covariance matrix can be identified directly from the data, i.e. from the
projection matrix Z%,, , ;, without solving any Riccati or Lyapunov matrix equations.

The deterministic part of the model can be identified from an optimal least
squares problem defined from the projection matrix Z§ .+, the extended observ-
ability matrix O; ,, 4 and D.

Furthermore the necessary projections, Zy . 1, Z41+; and Z5,.,, which are
needed in order to compute a complete state space model realization for the sixtuple
matrices (4, B, D, E, C, F) (and/or K and A = E(g,efl ). can be computed through a
numerically stable LQ decomposition of

UJlL g
Us\s
Yous

YJLL+1

However, it is in general faster to compute Z;;,, 1, 25,1+ and Z5,.,, directly
from the definitions. This means that the algorithm both can be implemented as an
correlation based method and a square root based method.
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