MODELING, IDENTIFICATION AND CONTROL, 2000, voL. 21, No. 3, 129184
d0i:10.4173/mic.2000.3.1

Nonlinear Passive Control and Observer Design for Ships

THOR 1. FOSSEN{
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Starting with passivity of the ambient water-ship system this article proceeds with
nonlinear observer design, design of dynamic ship positioning systems and weather
optimal positioning control systems exploiting the passivity properties of the vessel
and the surrounding water. The article gives an overview of methods for passive
ship control and observer design.

1. [Introduction

In this paper an overview of passive ship control systems design is presented.
Passivity as a tool for ship control was first applied in the 1990s even though passivity
concepts have been widely used and recognized as a physical and intuitive design
methodology for mechanical systems like robots, pendulums, motors etc. Before this,
sce Berghuis (1993), Berghuis and Nijmeijer (1993), Canudas de Wit et al. (1992),
Landau and Horowitz (1989), Loria et al. (1998), Nicosia and Tomei (1990), Nicosia
et al. (1990), Ortega and Spong (1989), Ortega et al. (1998), Slotine ez al. (1987),
Slotine and Li (1987) for instance. The main reason that these concepts have not been
directly adopted when designing ship control systems are that the hydrodynamic added
inertia and damping matrices depend on the wave frequency and the speed of the
vessel. The relationship between these quantities and passivity has not been fully
understood and therefore neglected in ship control design. In this presentation we will
only consider low-speed ship (U = 0) applications such as station-keeping and dynamic
positioning while cruise control, that is a ship moving at positive constant forward
speed (U = constant) will not be covered.

1.1. Background

Passivity in ship control was first applied by Serensen (1993), Serensen and Egeland
(1993). Serensen and Egeland (1995) used a passive controller to damp out 1st-order
wave-induced vibrations in heave for a surface effect ship (SES). In this work, passivity
showed to be an excellent tool describing the pressure-induced vibrations of air
cushion. This resulted in a set of new design criteria for location of the actuators (fans)
and accelerometers in order to obtain perfect collocation.

Motivated by this work the first passive ship autopilot was designed by Paulsen
(1996) by treating the ambient water-vessel system as several interconnected mass-
damper-spring systems. In this work wave filtering and tracking control in 1 degree of
freedom (DOF) was addressed under the assumption that there were no wave drift,
ocean currents and wind disturbances. A practical design will, however, require integral
control in order to compensate for the environmental disturbances. A MIMO extension
of this work is found in Paulsen, Egeland and Fossen (1998).
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More recently, in the period 1998-2000, passivity has been exploited in the design
of several commercial ship control systems by Fossen and co-authors. An overview of
this work 1s presented below.

Ship Modeling

In Section 2, we will present the passivity properties of the ship dynamics. This is
based on results of Fossen (1994), Fossen and Fjellstad (1995), and Lewis (1988). It
will be distinguished between ships moving at high speed (maneuvering model) and
low-speed applications like station-keeping and dynamic positioning. For ships moving
at high-speed a shift of frequency due to the incoming waves (frequency of encounter)
is observed. Energy conservation of the ship dynamics is treated as two interconnected
systems. The first system describes the dissipative motion of the rigid-body (ship) while
the second system represents the forces due to potential theory generated by the
ambient water particles. It is shown that for a stable ship, both sub-systems are passive
as well as the interconnected system. For an unstable ship, e.g. a large tanker, the
mapping from velocity to force is input feedforward passive with shortage of passivity.
This means that the ship must be stabilized by positive feedback.

Nonlinear Passive Observer Design

In Section 3 it is shown that for low-speed applications like dynamic positioning
(DP) of ships, the structural properties of the ship model can be exploited when
designing passive and globally exponentially observers (GES) for reconstruction of
velocities, wave frequency motions, and wind and current forces (Fossen and Strand
(1999)). In addition, it is possible to adapt the wave frequency on-line (Strand and
Fossen (1999)). In existing DP systems, the wave filtering and state estimation problem
are solved by using linear Kalman filters (Fossen (1994)). The major drawback of this
approach is that the kinematic equations of motions must be linearized about a set of
predefined constant yaw angles to cover the whole heading envelope. For each of these
linearized models, optimal Kalman filter and feedback control gains are computed
(stochastic system with 15 states and 120 covariance equations) such that the gains
can be modified on-line by using gain-scheduling techniques. On the contrary, passivity
theory showed to be a new tool reducing the number of tuning parameters to a
minimum. Experiments with full-scale ships using the passive observer document
performance improvements to the Kalman filter.

Nonlinear Passive DP

In Section 4 the passive observer of Section 3 is used as basis when designing
nonlinear DP control systems. Two methods for nonlinear DP is discussed; a DP
system derived by using observer backstepping (Fossen and Grevlen ( 1998), and
Aarset, Strand and Fossen (1998)). Extensions to locally optimal backstepping (LOB)
control and globally inverse optimality are done in Strand, Ezal, Fossen and Kokotovic
(1998, 1999). Finally, a PD-control with bias compensation satisfying a “nonlinear
principle” is presented (Loria, Fossen and Panteley (2000)).

Nonlinear Passive Weather Optimal Control

In Section 5 a new concept for weather optimal positioning control (WOPC) using
passivity is discussed (Fossen and Strand (2000)). The main goal of the WOPC is to
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minimize fuel consumption and emission of CO,/NO, during station-keeping of
ships and floating production vessels offshore. This is done by transforming the ship
positioning problem from Cartesian coordinates to polar coordinates. Hence, the ship
can be controlled on a circle arc similar to a pendulum in the gravity field. The
environmental forces due to wind, waves and currents represent an unknown uniform
force field moving the ship to a constant position and weather optimal heading angle.
This is obtained by forcing the ship bow to point towards the circle center at the same
time as it moves on the circle arc.

1.2. Problem Formulation

Based on the models in Section 2 two standard ship control problems are defined.
These are both formulated as output feedback control problems since commercial
systems are based on position and heading measurements (no velocity measurements).
Although there are commercial available velocity and angular velocity sensors, we still
have to solve the wave filtering problem. This is usually done by adding two additional
states in each DOF of the ship model in order to obtain a notch effect at the dominating
wave frequency. Hence, the ship control problems will be output feedback control
problems even though all positions and velocities are measured.

In addition to this, the output feedback controller must be implemented with
integral action in order to compensate for slowly-varying wave drift forces. wind
and ocean currents. A PD-controller cannot be used in a practical implementation.
Therefore, the following design requirements must be met when designing a ship
control system:

e Output feedback control using position and heading measurements.

e Wave (notch filtering) of position and velocity estimates at the dominating wave
frequency.

e Integral action for compensation of wave drift forces, currents and wind loads.

A mathematical formulation for this is given below.

1.2.1. 3 DOF Low-Speed Control (Dynamic Positioning)

With low-speed applications we mean station-keeping and marked positioning
(tracking control) at speeds U = 0. This is usually referred to as dynamic positioning
(DP). This is a 3 DOF output feedback tracking control problem (surge, sway and
yaw) where we can assume that the Coriolis and centripetal forces can be neglected.
The resulting model is written, see Section 2 and Sections 3.1 and 3.2 for details:

Kinematics i =J)v
Ship dynamics Mv+Dv=t+J7@)b
2nd-order wave drift + currents + wind b=—T 'b+%¥n )
I1st-order wave-induced disturbances E=AE+E_ w

n.,=C,¢
Measurement equation Y=g+, +v
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Pierce STP System

Figure 1. Dynamic positioned ship.

where
M=M">0 M=0
T . (V)
D=D'>0 D=0
The control objectives are:
1(1) = 11,(2) 3
V() - v,(0) @

where 1, v, € #° are sufficient smooth reference trajectories. This is an output feedback
tracking problem since only y is available for feedback.

This output feedback control problem has been solved by using observer back-
stepping (Fossen and Grovlen (1998), and Aarset, Strand and Fossen (1998)). Exten-
sions to locally optimal backstepping (LOB) control and globally inverse optimality
are done in Strand, Fzal, Fossen and Kokotovic (1998, 1999), see also Strand (1999)
and references therein.

Another approach is to use PD-control law with bias compensation through a
“nonlinear separation principle” (Loria, Fossen and Panteley (2000)).

The nonlinear observer is designed by using SPR-Lyapunov analysis, sce Fossen
and Strand (1999) and Strand and Fossen (1999).

1.2.2. 3 DOF Way-Point Tracking Control (Maneuvering)

Way-point tracking control can be done by using a trajectory generator for genera-
tion of a smooth trajectory #,€ 3 based on a set of pre-defined way-points. In this
case the effect of forward speed U> 0 must be included in the model matrices. The
ship dynamics is written:
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Figure 2. Dynamic positioned semi-submersible.

M(UW +n(v) =t+ I ()b (5)

where n(+) should include the effect of Coriolis, centripetal and nonlinear damping
forces e.g.:

l n(v) = C(v)v + D(v)v ©)

The rest in (1) is unchanged while:

MU)##M*(U)>0 M=0onlyif U=0

D(v) # DT('I’) >0 C(v) =-C T(‘,) (?)
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Figure 3. Supply vessel.

The control objective is

1(1) = (1) ®
(1) = va(?) ®

where 5, vy #° are sufficient smooth reference trajectories. This is an output feedback
tracking problem where a Lyapunov function candidate motivated by kinetic energy
of the ambient water-ship system (see Section 2):

V= EyTM(U)v, M(U) = Mgg + M4(U)

=V My + MUy

= (MM+% ML) + ME;(U»)v

=y (M.w +3 (M) + Mi(w))wr%vfmﬂw)v

=v’M(U)H;v’(M,,(U)—MA(U)+M3:(U))v

fails due to the non-symmetry of M ,(U). Hence, it is not clear what we should do
with the second term in the expression for ¥. However, the Lyapunov function
candidate V= (1/2)v"v and V =v"v can be used instead since M(U) is invertible for
all U. Moreover:
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v=M YU) [t +ITW)b —n(v, U)] (10)

This also means that feedback linearization works, see Berge (1999) for examples.

2. Nonlinear Modeling of Ships

In this section we will give a brief introduction to ship modeling.

2.1. Ship Equations of Motion

For a conventional ship it is common to consider the motion in surge (forward),
sway (sideways) and yaw (heading), see Figure 4. Denote the control forces and
moments in surge, sway and yaw by ¢ =[1,, 75, 753]", the velocity vector decomposed
in a body-fixed frame as v={[u, v,r]" and the Earth-fixed positions/Euler-angles as
= [—x: P l/"r]T'

Then the nonlinear ship model in 3 DOF (surge, sway and yaw) can be written,
see Fossen (1994):

M(U) +n(v) = + I 7 ()b (11)
n=JW)yv | (12)
|

where U= \-*’{ u” +v? is the forward speed, be #° is slowly-varying bias term due to
wind, currents and wave drift forces, Me %* * * is the speed dependent inertia matrix,
n(*)e % is a nonlinear function of Coriolis, centripetal and damping forces and t e %3
is a vector of control forces and moment.

J(a): R— SO(3) is the rotation matrix in yaw given by:

cosa —sina 0
J(@)=|sina cosa 0 (13)
0 0 1

v (sway) q (pitch)

U (surge)

Figure 4. Definition of state variables in surge, sway, heave, roll, pitch and yaw for a marine
vessel.
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Notice that J ~*(a) = J"(¢). Let C be a matrix of Coriolis and centripetal terms and
D be a matrix of damping terms. Hence, for a ship in 3 DOF the nonlinear terms in
the ship model can be collected into a vector given by:

n(v) = C(v)v + D(vpv (14)

The different matrices can be represented as:

M(U)=Mpgg + M (U) (15)
C(v) = Cpp(v) + C4(v) (16)
D(v) =D + Dy(v) (17)

Here the subscripts denote RB (rigid-body) and 4 (hydrodynamic added mass). The
damping matrix D(v) is portioned into a linear part D, and a nonlinear part Dy(v).
Several hydrodynamic effects contributes to the damping matrix. These include poten-
tial damping, damping due to Morrison’s equation (vortex shedding), wave drift
damping, skin friction etc., see Fossen (1994) for more details.

For 3 DOF the inertia matrix takes the form:

m 0 0
Mgg=MZi;=| 0 m mxg;|>0 (18)
0 mxg I,

where m is the mass, xg is the x-coordinate to the center of gravity and I, = I + mxZ
is the moment of inertia. The hydrodynamic added inertia matrix M is in general
speed dependent and non-symmetrical, that is:

-X, 0 0
M, (U)=| © Y, —Y,|>0 (19)
0 N, —N,

where the hydrodynamic coefficients X,, Y, ¥;, N; and N, depend on the forward
speed U. For low-speed applications (U~ 0) under the assumption of no incoming
waves M, = MY, that is ¥; = N,.. Similarly, linear damping is written as:

~X, 0 0
D,=| 0 Y, —Y,
O - A‘“l; N

F.

At low speed under the assumption of no incoming waves it can be shown that
D, = D/. The Coriolis and centripetal matrix:

Cv) = Con() + (:Auﬂ 20)

is given by (Fossen (1994)):
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0 0 —nm(xgr +v)
Cra(v) = — Cip(v) = 0 0 mu (21)
mixer+v) —mu 0
0 0 Y,v+ Yur
C,(v)=—CH(v)= 0 0 — X,u (22)
—Yyv—Y.r Xu 0

2.2. Nonlinear Low-Speed Model

In dynamic positioning (DP) systems a low-speed model is used for station-keeping.
Moreover:

Ux0 (23)
implies that (11), (12) and (14) can be approximated by:
My +Dv=1+J7@)b | (24)
n=JW)y (25)
where
[ m— X 0 0
M=MT"= 0 m—Y, mxg—Y.|>0

X, 0 0
D=D'=| 0 Y, —-Y, |>0
0 Y., —N,

2.3. Nonlinear Model Properties

Based on the nonlinear model above several definitions and theorems will now be
stated in order to exploit the properties of the proposed model structure.

2.3.1. Properties of the Inertia Matrix
The inertia matrix M is written as:

M =M, M 26)

where M is the rigid-body inertia matrix and M, is the hydrodynamic added inertia
matrix. For these matrices the following properties hold:

P1 Mgz=M}, is a positive definite matrix.

P2 M, is a strictly positive matrix for U > () (positive definite at low speed U~ 0).
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Theorem 2.1 (Intertia Matrix) The inertia matrix M is strictly positive, i.e.
viMy>0Vv#0.

Proof. This follows directly from Properties P1 and P2:

vViIMy = v Mppv 4 é vIM, +MDv>0,Vv#0 27

2.3.2. Properties of the Coriolis and Centripetal Matrix

Consider the Coriolis and centripetal matrix:

C() = Cra(®) + CA) (28)

Theorem 2.2 (Coriolis and Centripetal Matrix) The matrix C(v) is skew-symmetrical,
that is

C(v)=—-C™(» (29)
Proof. See Fossen and Fjellstad (1995). |

2.3.3. Properties of the Damping Matrix

Consider the damping matrix:
- 1
LD(v) =D+ Dn(v) (30)

where:

1. D, > 0 for a straight-line stable ship.
2. D, <0 for a marginally or unstable ship.

Theorem 2.3 (Nonlinear Damping Matrix) The damping matrix Dy(v) is strictly positive,
ie. vD(wv=0Vy#0.

Proof. This follows directly from the dissipative nature of the damping forces. O

2.4. Dissipativity and Passivity Properties

The dissipativity and passivity properties of the ship are of interest when designing
ship control systems using the energy conservation. A discussion on passive and
dissipative control design is found in Hill and Moylan (1977). The main idea is that
every nonlinear passive system which is controlled by a passive controller 1s closed
loop-stable. Hence, the passivity properties of the ship model should be investigated
before designing a passive controller. The general framework and definitions below
are adopted from Willems (1972) and Sepulchre et al. (1997).

Consider the ship as two separate systems which are interconnected by each other
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Rigid body Vv
System
(ship)

v

Dissipative
Damping

Ambient Water
System <
Potential Theory

Figure 5. The upper system describes the motion of the rigid body (ship) including dissipative
damping. The lower system represents the forces due to potential theory generated by the
ambient water particles.

as shown in Figure 5. The first system describes the dissipative motion of the rigid
body and it is passive in the sense that all dissipative forces are passive. The second
system describes the forces generated from the ambient water particles due to potential
theory (forced body oscillations) for a ship moving at constant speed.

Under the assumption of low speed the nonlinear models (11)(12) can be
written as;

MgpV + Crg(v)v + Dy(viv=1t—14 31)
M v+ C,(vw+D,v=1, ]

where 7 is the external forces due to thrusters, wind, currents and waves and t; is the
hydrodynamic forces and moments due to forced oscillations including linear potential
and viscous damping,

Theorem 2.4 (Passive Rigid-Body Dynamics) The rigid-body dynamics: Mggv , Crg(v)v
including nonlinear dissipative damping Dn(vv is passive, i.e. the mapping (t — 1) to v
s passive.

Proof. Consider the storage function (kinetic energy):
V= v Mgy (32)

which is a positive definite function in v, then the integral:

. .
J. Vit —1y)dt = ‘[ vi(Mggv + Crg(v)v + Dy(v)V)dt
0 [}

. .
= J v M et +j v Dy (v)vdt (33)
0 0

T

= V,(T)— V1 (0) 'J v Dy (v)vdr

0
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We have here used the properties v Crp(v)v=0, Myz=MP%;>0 and Mg;=0.
Furthermore, since viscous damping forces are dissipative i.e.: {§ v’ Dy(v)vdt > 0, then:

T

Vi(7) I’?(U)*ﬂj vi(t —Ty)dt (34)

1]
which completes the proof. |

Theorem 2.5 (Passive Dynamics of the Ambient Water Particles) The dynamics of the
ambient water particles is passive from v to ty.

Proof. Consider the storage function (kinetic energy due to hydrodynamic added
inertia):

V,=-vIM,v (35)

which is a positive definite function in v, then the integral:

. .
J vitgdt = '[ viM v+ C,(v)v + Dyv)dr
] O

. r
—J v M, vdr 4 -[ v Dpvdr (36)
O

0

.
= V,(T) — V5(0) +J. vi'D, vdt

0

We have here used the property that: v/C (v)v =0 and that the integral of v/M v
where M, # M7 can be written:

. r
-f vIM vdt = [ vIM ,dv
0

0O

—%v"'MAv

—
j v M, vdr (37)

4] 2 0

For low-speed applications M, = 0. Hence:

= V(1) — V,(0) (38)

-
'[ vIM vdt = ;v"‘M,,v
1] 0

Hence, the following considerations can be made:
1. For a stable ship, the mapping from v fo ty is passive.
Since: {Iv'D,vdt = 0, we have:
r

Vy(T) — V,(0) sj vit,di (39)

0
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2. For an unstable ship, the mapping from v to t,, is input feedforward passive.
Let min(v'Dyy) = Z,,;, (D, v"v, where A, (D,) <0 is the smallest eigenvalue of
the matrix D;. Then

T T
-[ viDyvdt = 2,0 (Dy) J vivdt (40)
0 1]
and hence:
T
V(1) - 0y < '[ vty — Ain(D VT V)d1 (a1)
0

This means that the system is input feedforward passive which is seen by
choosing the storage function as w(v,1y)=v"1y— A...(D,)v"v. Since
Amin(Dy) <0, there is a shortage of passivity according to the definition made
by Sepulchre et al. (1997), i.e. the system must be stabilized with positive
feedback to achieve passivity. This is typically for unstable tankers.

The result above states that for any stable ship, the mapping from 7 to v is passive.
This is due to the properties of two passive interconnected systems. In the case of an
unstable ship, the mapping from 7 to v is not passive and the ship must be stabilized
by positive feedback to obtain a stable closed-loop system.

3. Nonlinear Passive Observer Design

Filtering and state estimation are important features of a DP system. In most cases,
measurements of the vessel velocities are not available. Hence, estimates of the velocities
must be computed from noisy position and heading measurements through a state
observer. Unfortunately, the position and heading measurements are corrupted with
colored noise due to wind, waves and ocean currents as well as sensor noise. However,
only the slowly-varying disturbances should be counteracted by the propulsion system,
whereas the oscillatory motion due to the waves (1st-order wave disturbances) should
not enter the feedback loop. This is done by using so-called wave filtering techniques,
which separates the position and heading measurements into a low-frequency (LF)
and wave frequency (WF) position and heading estimate (Fossen (1994)).

In existing DP systems the wave filtering and state estimation problem are solved
by using linear Kalman filters. The major drawback of this approach is that the
kinematic equations of motions must be linearized about a set of predefined constant
yaw angles, typically 36 operating points in steps of 10 degrees, to cover the whole
heading envelope. For each of these linearized models, optimal Kalman filter and
feedback control gains are computed such that the gains can be modified on-line by
using gain-scheduling techniques. In the seek for new control strategies the linear
Kalman filter approach is a major obstacle since it is difficult and time-consuming
to tune the state estimator (stochastic system with 15 states and 120 covariance
equations). The main reason for this, 18 that the numerous covariance tuning
parameters may be difficult to relate to physical quantities resulting in a somewhat
ad hoc tuning procedure.

In this section the nonlinear passive observer of Fossen and Strand (1999) is
presented, see Nijmeijer and Fossen (1999) for a more general discussion on nonlinear
observer design. The passive observer includes wave filtering properties, bias state
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eslimation, reconstruction of the LF motion components and noise-free estimates of
the non-measured vessel velocities. The proposed observer is proven to be passive
and GES. Hence, only one set of observer gains are needed to cover the whole state
space. In addition, the number of observer tuning parameters are significantly
reduced and the wave filter parameters are directly coupled to the dominating wave
frequency. Passivity theory showed to be a new tool with respect to accurate tuning
of the observer.

3.1. DP Ship Model
The low-frequency motion of a large class of surface ships can be described by the
following model:

b= —-T 'b+¥

My +Dv =7 + 37 )b 1
n| 42)

0= I

where external forces and moment due to slowly-varying wind, currents and waves are
lumped together into an Earth-fixed bias term be 2°.

3.2. lst-Order Wave-Induced Model
A linear 2nd-order wave frequency (WF) model is considered to be sufficient for

representing the WF-induced motions and can be formulated as
E=AE+E,w (43)
qw = (-:'It'é

where 1, =[x, V> ¥, ]7> E€R® and w,, = [w,, w,, w3 ]" € R? is a zero-mean Gaussian
white noise vector and:

P ! Co=0 1, E,=|° 44
¥ o —aaa OO BT @

where Q =diag{w,,w,,w;}, A=diag{l{,,{,,{s} and K, =diag{K,,,K,;,K,3}.
This model corresponds to three decoupled WF models:
Mo, K,,s
()= 3 nre s
W, 57+ 20008 + wf

?

(i=1,2,3) (45)

where w; (i = 1. .. 3) are the dominating wave frequencies, {; (i = 1. .. 3) are the relative
damping ratios and K,, (i =1...3) are parameters related to the wave intensity repre-
senting the 1st-order wave-induced disturbances on the vessel. From a practical point
of view, the WF model parameters are slowly-varying quantities, depending on the
prevailing sea state. Typically, the periods 7; of the dominating waves are in the range
of 5 to 20 seconds in the North Sea cortesponding to a wave frequency ey = 2n/T,.
The relative damping ratios {; will typically be in the range 0.05-0.10.

3.2.1. Wave Filtering

The WF response of the ship is generated by using the principle of linear super-
position, that is the Ist-order wave-induced motion #,, is added to the LF motion
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LF-motion + WF-motion

vt \Wﬂvﬁﬁ%\% ]

0 1 | L 1 I L 1 L 1 _J
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time (s)

Figure 6. Figure showing the total ship motion as the sum of the LF-motion and the WF-
motion.

components of the ship given by 5. Hence, the total ship motion is the sum of the LF-
motion components and the WF-motion components as shown in Figure 6, that is:

y=n+un,+v (46)

where ve 47 is white Gaussian measurement noise. Notice the oscillatory behavior of
the wave-induced motion component. It is also assumed that the WF model excitation
we 2 in (43) is zero-mean Gaussian white noise.

The main objective of the observer is to perform wave filtering:

Definition 3.1 (Wave Filtering) Wave Filtering can be defined as the reconstruction of
the LF motion components n from the noisy measurement y =5+ n,, +v by means of
an observer (state estimator). In addition to this, a noise-free estimate of the LF velocity
v should be produced from y. This is crucial in ship motion control systems since the
oscillatory motion n,, due to Ist-order wave-induced disturbances will, if it enters the
Jeedback loop, cause wear and tear of the actuators and increase the fuel consumption.

Remark 3.1 In general it is impossible to counteract the 1st-order wave-induced motion
of a ship when applying a reasonable propulsion and thruster system. Hence, no improve-
ment in position performance should be expected by feeding back the signal n,, to the
controller.

3.3. Nonlinear Observer Design

When designing the observer we will assume that J(y) ~ J(y + v,,). This is a good
assumption since the magnitude of the wave-induced yaw disturbance ,, will be less
than 5 degrees in extreme weather situations (sea state codes 5-10), and less than 1
degree during normal operation of the ship (sea state codes 1-5). We will also neglect
the zero-mean white noise terms n, w and v in (42), (43) and (46) in the Lyapunov
analysis (deterministic approach). The Lyapunov stability analysis is only used to
derive the nonlinear observer structure. When implementing the observer, this assump-
tion can be relaxed. This implies that the observer error states will converge to balls



144 Thor I. Fossen

proportional with the covariances of the white noise signals n, w and v instead of the

origin itself,
Based on this the observer model takes the form:

§=A\'\'§
i =30, v
b=—-T 'b

Mv=—Dv+J7({,)b+7

y=n+n,=51+C,¢

where

Yy=V -+,

47)

(48)

is the compass measurement. For notational simplicity the states £, # and the measure-

ment y are written in state-space form:

tio = Aotjo + BoJ(Y, v
¥y =Cony

where 5, =[E7,4"]" and:

A A, O B 0 C,=[C, I
0 — 0 Us (]_IJ U_Iw J

A nonlinear observer copying the dynamics (47) is:

E=AE+K,§
7 =30, )¢ + K,

b= —T B+ -K,§

M= —Dv+37(,)b+ 7 + ]JT(I,D,-)KJ/
7

y=i4+C.¢

(49)

(50)

(51

where ¥ = y — § is the estimation error and K, e ¢ ** K,, K4, K, € %> ™ ? are observer
gain matrices to be interpreted later. y > 0 is an additional scalar tuning parameter
motivated by the Lyapunov analysis. Similarly as (49), the system (51) is written in

state-space form:
flo = Aotio + BoJ(¥,)9 + K¥

¥ =Cofip

(52)
(33)
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Figure 7. Block diagram showing the nonlinear observer.
where 7o = [€7,4"]" and:
K,
K= (54)
K,
The observer structure is shown in Figure 7.
3.4. Determination of the Observer Gain Matrices
The estimation errors are defined as ¥ = v — ¥, b=b — b and #, = #, — #,. Hence.
the error dynamics can be written:
iio = (Ao — KCo)ijo + B J (¥, )9 (55)
b= —T 15— LK,y (56)
Y
: S|
Mi= —Di+J7(y,)b—~IT(Y,)K.§ (57
i
The dynamics of the velocity estimation error (57) can be rewritten as:
Mi=— Dﬁ—l.l"'(u,y}.)z
¥
where
Z2K.5—b (58)
By defining
-~ N ﬁ[‘l
b (59)
L b
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'

Figure 8. Block diagram showing the dynamics of the position/bias and velocity estimation
Errors.

(55), (56) and (58) can be written in compact form as:

X = AX + BJ(J, ¥

(60)
7=Cx I
where
Ao —KC, 0 B
0
A= , B= , C=[K,C ] | 61
—lKJCn T-! [0—| [K,Co 7 (61)
i
The error dynamics is shown in Figure 8 where two new error terms &, = — J (y)z and

&, = J(y)¥ are defined.

3.4.1. SPR-Lyapunov Analysis
The observer gains are determined by using an SPR-Lyapunov design.

Lemma 3.1 (Kalman-Yakubovich-Popov (KYP) Lemma) Let Z(s) = 6(s] — /)~ '@ be
an x n transfer function matrix, where ./ is Hurwitz, (<7, ) is controllable, and (<4, €)
is observable. Then. Z(s) is strictly positive real (SPR) if arnd only if there exist positive
definite matrices P = P and 9 = 9T such that (Khalil (1996)):

PA+ATP= —2
BTP =% (63)

Proposition 3.1 (SPR block 75) If y >0 and the observer gain matrices are given the
following structure:



Nonlinear Passive Control and Observer Design for Ships 147

[k, 0 0]
0 klz {}
k 0 0
0 0 ky .
K, = JKa=| 0 ki O (64)
kie 0 0 0 o &
0 ks O 3
L0 0 kg
kyy 0 0 kyy O 0
Ko=1| 0 kyy 0 [Ke=| 0 kg © (65)
0 0 k| 0 0 ks

then the elements k;; > 0 can be chosen such that the triple (A, B, C) given by (61), that
is the mapping €,— Z (Block H, in Figure 8) satisfies the KYP lemma.

Proof. Since K5 and K, are chosen to be diagonal, the mapping &,— % (see the lower
block in Figure 8) can be described by three decoupled transfer functions:

#(s) = H(s)e,(s) where H(s)=Hg(s)Hg(s)
and-
Hy(5) = Co(sl + Ay — KCy) 1“0

Hy(s) =K, + (1 + T~ 1) 'K,
The transfer functions hi(s) (i=1...3) of Hy(s) and hiy(s) (i = 1. .. 3) of Hy(s) becomes:

52 4+ 200,55 + 03

)= 5—————— ok (66
to(s) Sy Ga ) + kg + 260,82 + (0k + 200,k 2; — Ky 0%)s + w2k, (66)
1 k
s o3 k
\ (T.' k4i) s+ kll_
hy(s)=kgy—7 Ti> kg (67)
S+E S'+'T,E

In order to obtain the desired notch effect (wave filtering) of the observer, see Definition

1, the desired shape of ho(s) is specified as:

§* 4+ 200,85 + wZ

Houe) = O T Ot (68)

where {,; > {; determines the notch and w,; > w,; is the filter cut-off frequency. Equating
(66) and (68) yields the following formulas for the filter gains in K| and K,:

kii= —=20(0,—) L (69)
[£3

kai=20w,(L;:— ;) (70)

k3= wg (71)

Notice that the filter gains can be gain-scheduled with respect to the dominating wave
frequencies w,; if desired. In Figure 9 the total transfer function h'(s) = hi(s) - hi(s) is

oi
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Figure9. Bode plot showing the transfer function Ai(s) when U/T, € L/k; < @y < @ (i=1...3).

illustrated when all filter gains are properly selected. It is important that the 3 decoupled
transfer functions h'(s) all have phase greater than —90° in order to meet the SPR
requirement. It turns out that the KYP lemma and therefore the SPR requirement can
easily be satisfied if the following tuning rules for T,, J, and k; are applied:

WT, €kylky <o, <wg ({=1...3). (72)

Here w,; (i = 1...3) are the dominating wave frequencies and T;> 1 (i =1.._3) are the
bias time constants used to specify the limited integral effect in the bias estimator. /\

Remark 3.2 The observer can be gain-scheduled with respect to the dominating wave
frequency vector m, = [0, , (0,2, W,3)" by noticing that K, =K (0,), see Egs. (69)-(70).
The gain matrices K, , K, and K, are independent of w,. An estimate of @, can be found
by using an on-line frequency tracker (Fossen (1994)) or parameter adaptation, see
Section 3.5.



Nonlinear Passive Control and Observer Design for Ships 149

Theorem 3.1 (Main Result: GES Nonlinear Observer Error Dynamics) Under Assump-
tions Al1-A4 the equilibrium point (ify, b, V) = (0,0, 0) of the error dynamics (5557
is GES.
Proof. Consider the following Lyapunov function candidate:

V=p"Mv + "Px (73)

Differentiation of V along the trajectories of ¥ and % and application of - Assumptions
Al-A4, yields:

V= —7%(D+D")v+X"(PA+ ATP)X + 20" J (), )BTPR — 257 ) W,z (74)
Application of Proposition 3.1 1o (74), yields:
V=—y(D+D")7—x"Qx (75)

Hence, v and % = [E7,3§", b"]" converge exponentially to zero, g.e.d. AN

3.4.2. Passivity Interpretation of the Nonlinear Observer

The error dynamics in Figure 8 can be described by two blocks #, and %
corresponding to the mappings &, +— ¥ and &, Z. Notice that the coordinate trans-
formation is performed through a non-singular and bounded matrix J(,).
Proposition 3.2 (Strictly Passive Block #4,) The mapping 94, is state strictly passive.
Proof. Let

U= ;T‘ETMG (76)

be a positive definite storage function. Time differentiation of U along the trajectories
of v yields:

U= - ;}-e*m + D7) — 273, )P 7

Using the fact that &, = — J'(Y,)z, yields:

ev=U+ ;}-'ﬁ"'([) +DTy (78)
Hence:
j e (D)()dr > o+ f (79)
ip

where o = (1/2)y2,,,,(M) is a positive constant and f=(1/2)y[i ¥"(D + DT )vdr >0 is
the dissipated energy due to hydrodynamic damping. FAN

Theorem 3.2 (Passive Observer Error Dynamics) The nonlinear observer error dynamics
(55)+(57) is passive.
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Figure 10. CyberShip I: Model ship scale 1:70.

Proof. Since it is established that 9, is state strictly passive and 71, is SPR (Propositions
3.1 and 3.2), the nonlinear observer error dynamics (55)(57) must be passive. In addition
to this, GES has been shown (Theorem 3.1). A

3.5 Adaptive Passive Observer Design

An extension to the case where the wave frequencies w; and damping rations {;
(i = 1...3) which are parameters in A,, vary with time-varying sea states are done in
Strand and Fossen (1999). This is done by including an adaptive updating mechanism
for the wave frequencies. Experimental results with a model ship are also reported.
The performance of the adaptive observer is better than the non-adaptive observer
mainly due to the improvements of the adaptive wave filter.

Gain-scheduling techniques, using off-line batch processing frequency trackers and
external sensors such as wind velocity, wave radars and roll, pitch angle measurements
can also be used to adjust the WF model parameters to varying sea states (Fossen
(1994)). Additional sensors units can, however, be avoided by using an adaptive
observer design. Since the wave models are assumed to be decoupled in surge, sway
and yaw, A and Qin A,, are diagonal matrices given by:

N 0 o, 0 1 0)
WO= e _onnl| — diag(0,,,) — diag(0,.,) (

where 0, =[07,,07,]", and 0,,,,0,,€R* contain the unknown wave model para-
meters to be estimated on-line. The adaptive observer equations and the stability
analysis are found in Strand and Fossen (1999).

3.6. Experimental Results

The nonlinear and adaptive observers have been implemented and tested at the
Guidance, Navigation and Control (GNC) Laboratory at the Department of Engineer-
ing Cybernetics, NTNU. A detailed description of the laboratory is found in Strand
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Basin

wind generator
(ducted fan)

1 s

Y wave generator

Figure 11.  Left: Experimental setup. Right: Picture of Cybership L.

(1999) and URL: http:/www.itk .ntnu.nolansatte/ Fossen_Thor/GNC/. In the experi-
ments we used Cybership L.

A nonlinear PID controller is used for maintaining the ship at the desired position
(x4,¥4) and heading yy,. The PID control law is written:

.= — MIT(Y, — ) (Kpc +K e+ K(-J‘ cdr) (81)
C

]
where e is the estimated LF position deviation, defined as:
e237(a) (i — 1) (82)

An illustration of the experimental setup is shown in Figure 11. The experimental
results are transformed to full scale by requiring that the Froude number:

U
E = = constant 83
Jie (83)
Here U is the vessel speed, L is the length of the ship and g is the acceleration of
gravity. The scaling factors are given in Table 1 where m is the mass and the subscripts
m and s denote the model and the full-scale ship, respectively. The length of the model
ship is L,, = 1.19 meters and the mass is m,, = 17.6kg. A full scale ship similar to
Cybership I has typically a length of 70-90 meters and mass of 40005000 tonnes.
The experiment can be divided into three phases:

e Phase I (No waves). Initially the ship is maintaining the desired position and
heading with no environmental loads acting on the ship (calm water). The
reference heading is — 140 degrees. When the data acquisition starts, a wind fan
1s switched on. There is no adaptive wave filtering. The effect of the wind loads
are reflected in the bias estimates in Figure 13.

o Phase Il (Waves, adaptive wave filter is off). After 1700 seconds the wave gener-
ator is started. In this phase we can see the performance of the observer without
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Table 1. Scaling factors used in the experiments

(Bis scaling).
position: LJL,
linear velocity: ~LJL,,
angular velocity: N LmH:
linear acceleration: 1
angular acceleration: L /L,
force: mm,,
; i L

moment:

m"le
time: JLJL,,

Estimated wave periods [sec] Estimated relative damping ratios [-]

Figure 12. Estimated wave periods (left) and estimated relative damping ratios (right) for
surge (solid), sway (dashed) and yaw (dotted). The adaptive wave-filter is activated after 2800
seconds.

adaptive wave filter. In the wave model we are assuming that the dominating
wave period is 9.2 seconds and the relative damping ratio is 0.1, see Figure 12.

e Phase Il (Waves, adaptive wave filter is on). After 2800 seconds the adaptive
wave filter is activated. The estimates of dominating wave period and relative
damping are plotted in Figure 12 for surge, sway and yaw.

A spectrum analysis of the position and heading measurements shows that the esti-
mated wave periods converge to their true values, that is wave periods of approximately
7.8 seconds and relative damping ratios of 0.07, see Figure 12. In Figure 13 the
measured position deviation and heading are plotted together with the corresponding
LF estimates. The effect of the adaptive wave filtering is clearly seen in Figure 15,
where the innovation signals are significantly reduced during Phase III, when the
adaptation is active and the wave model parameters start converging to their true
values. The effect of bad wave filtering is reflected by noisy control action by the
thrusters during phase II, see Figure 15. A zoom-in of the heading measurement
together with the LF estimate is given in Figure 14 both for phase II and III. Here we
see that the LF estimates have a significant WF contribution when the adaptive wave
filter is off. This is the reason for the noisy control action in phase II. The other zoom-
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Figure 13. Left column: Measured position and heading (gray) together with corresponding
LF estimates (solid). Right column: Estimated bias in surge, sway and yaw.

Zoom-In: Measured (dotted) and estimated LF (solid) heading (dashed) [deg]

It: Adaptive Wave-Filter Off Ik Adaptive Wave-Filter On
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Figure 14. Zoom-in of measured and estimated LF heading. Left: Observer without adaptive
wave-filtering. Right: Obscrver with adaptive wave-filtering,.
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Figure 15. Left column: Innovation in position and heading. Right column: Commanded
thrust in surge, sway and yaw.

in shows excellent LF estimation when the adaptive wave filter is active and the wave
model parameters have converged to their true values. Hence, it can be concluded that
adaptive wave filtering yields a significant improvement in performance compared to
filters with fixed WF model parameters operating in varying sea states.

4. Nonlinear Passive DP

Dynamic positioning (DP) systems have been commercially available for marine
vessels since the 1960s. The first DP systems were designed using conventional PID
controllers in cascade with low pass and/or notch filters to suppress the wave-induced
motion components. From the middle of the 1970s more advanced control techniques
based on optimal control and Kalman-filter theory were proposed (Fossen (1994)).

In the forthcoming sections, we will exploit the nonlinear passive observer of
Section 3 and design an output feedback controller for DP. Two design techniques
will be discussed:

e Observer backstepping
e Cascaded observer-controller design through a nonlinear separation principle
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4.2. Observer Backstepping

Traditional DP and thruster assisted PM systems are usually designed by using
model based linear feedback control in combination with linear optimal estimation
methods. This traditional design is based on the assumption of linear vessel kinematics
and error dynamics. As a result of these assumptions the vessel kinematics must be
linearized about several yaw angles, giving different linear models in corresponding
heading sectors. To avoid this, attempts towards nonlinear DP and PM control designs
have been taken.

In Grovlen and Fossen (1996) an observer backstepping approach on component
form was introduced as an attempt towards a nonlinear DP control law. The design
was adapted to a vectorial setting in Fossen and Grevlen (1998). This design provides
noise filtering of measured position and heading together with velocity estimates,
under the assumption of white noise only. However, in reality the measurements are
corrupted through noise colored by wave induced motions. To avoid wear and tear of
the propulsion system the estimates entering the feedback loop should be filtered
by using wave filtering techniques. Further, bias state estimation should be present
representing unmodeled slowly varying external forces.

This section 1s based on Aarset, Strand and Fossen (1998) which is an extension
of the results of Fossen and Grevlen (1998) constituting a complete nonlinear control
design for DP and PM purposes. Filtering of noise and WF motion, bias state estimates
and velocity estimates are done by using the passive observer in Section 3. Integral
action 1s included in the control law by feedback cancellation of bias estimates (separa-
tion principle). Additional integral action is included in the controller for performance
improvements and compensation of modeling errors. The control design will be based
on the model of a moored ship, see Figure 16, and will then apply for both moored
and free-floating ships.

Turret

Seabed

Figure 16. Dynamic positioned ship and mooring system
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4.1.1. Main Result
Consider the nonlinear ship model of Section 2:

My + Dv + J7W)Gy =1+ I ()b
i= I

(84)
(85)

where J7(/)Gy represents the mooring forces. The passive observer of Section 3 is

modified to include the mooring forces according to:
E=AL+K§

7 =JW)W +K,§

b= —T 'h+K.§
M= — DV — JTW)GH + I ()b + = + ITW)K,§
§=1d+C,&
This results in the error dynamics:
E = Awé - K1§
i =IO — K, §
b= —-T '"H—K,¥

Mi= —Di— JTW)GH+ I ()b — ITWK, §
which can be compactly written as:
Mi = — DV — J()Z,
:‘xu = Auio + Bo"(}){i
iﬂ = Cﬂilﬁl

where X, = col[E, i, b] and

A, —K,C, —K, 0
A=| -K,T -K, 0 |
| - K.T —K; -T7'
0
B,=|1
Lo

C,=[K,C, K,+G —1]

(86)
(87)
(88)
(89)

(90)

(91)
©92)
(93)
(94)

(93)
(96)
©7)

(98)

Now, observer backstepping can be applied to the observer LF estimates in two
vectorial steps. The tracking objective is specified in the Earth-fixed reference frame
by defining a smooth trajectory nye C* which describes the desired position and

heading. The backstepping variables are defined as:

t
leﬂ_qd*‘KJJ‘ ('i_’]'c:)d'féé1+l{191

0

(99)
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2, = JW)i— (100)
e =tf—ny, (101)
a=—Ciz; — Dz, +aj, — K; (5 — 5) (102)

where K| is a positive gain matrix used to obtain integral action. Hence, the control law:

T =MIT()[— Crz, — Dyz, — O(+) + 2] \ (103)

where:
O )=IJW[-M JTWY)Gj—M D+ M ~J())b 4 S(a)v]

+ K, J()9 —(C, + D, )’z +(C, + D))z, —ij, — K,1j, (104)
Q, =K, +C,K, +K,K, (105)
=[w, o, ;)" (106)

Q, = — JW)SH)L
- [(94 [0 UJ‘(_,lT ( l(]?]

Q, = — JWY)S(¥N

=[w;, oz o) (108)
L = diag{0,0, 1} (109)
D, = diag{d, k7K, ,d,k!k,, d kTk,} (110)

where k; (i=1,2,3) are the column vectors of the observer gain matrix K,. The
diagonal matrix D, is defined in terms of the elements of Q,, Q,, Q, as:

D, = diag{d, (o] 0, + 0 0, + 0T 0,),ds(0} 0, + ol o, + o wy),
de(0F o5 + (U:we + wgwg)} (111)

C, is a positive definite diagonal design matrix. Similarly, d{i=4,. .., 6) are positive
design constants. Furthermore, S 1s a skew-symmetric matrix defined as:

0 —hy By
Sthy=| h; 0 —h, (112)
—h; Ny 0

where h =col[h,, hy, h3].

4.1.2. Stability Analysis
Stability of the controller-observer error dynamics:
t=—C,z—D.2+Ez+W,¥+W,i+W,E (113)
er=1—1, (114)

Mi= —Dv—J7(y)z, (115)
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%, =A%, + B,J(y)¥ (116)

0t

where z = col[z,,2,] and:

c, 0 D, 0 0 1
sz 3 Dz: * E_-
0 C, 0 D, ~1 0
w=| % w "1 w X (117)
' = * f = L] - 'Ir
e, i o o,

is proven by using Lyapunov theory:

V: I/(_'nn t I/(lllri (118}
Vn =522+ €] C Kiey (119)
Vo = V" MV + X PX,q (120)

Hence, by appropriate choices of the controller-observer gains it can be shown that
(Aarset et al. (1998)):

<0 (121)

If the bias state estimates b are used to cancel out the off-sets in the model (no integral
action in the controller K; = 0) the output feedback controller will be GES since it
can be shown that:

V<0 (122)

This means that the observer is used to provide integral action through a separation
principle. However, in practice it is necessary to include integral action in the controller
as well, that is K; > 0, in order to obtain good performance. For this case only uniform
GS can be guaranteed since ¥ < 0. Asymptotic stability can, however, be proven by
applying adaptive backstepping where the bias is treated as an unknown constant to
be estimated on-line. UGAS is guaranteed through a theorem for non-autonomous
systems where ¥ only needs to be negative semi-definite, see Loria, Fossen and ‘Teel
(1998) or Fossen, Loria and Teel (2000).

Extensions to locally optimal backstepping control and globally inverse optimality
are done in Strand, Ezal, Fossen and Kokotovic (1998, 1999).

In the next section, we will show how a more general result for cascaded systems
can be used to obtain a nonlinear separation principle for the passive observer and a
PD-controller with bias compensation.

4.2. Cascaded Observer-Controller Design via a Nonlinear Separation Principle

In this section we will apply a nonlinear separation principle to design an UGAS
cascaded observer-controller. Consider a cascaded system in the form (Panteley and
Loria (1998)):

}_:1:)'(1 = fl(f.,x)‘f‘(;{f., K}Xz (123)

%, 1%, =1, X) (124)
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!

J L

=
P
et

Figure 17. Cascaded systems £, and Z,.

where x, € #", X,e#" and x = col[x, x;]. The function (£, x) is assumed to be
contiuously differentiable in (¢, x,) and f,(z, x), G(t, X) are continuous in their argu-
ments, and locally Lipschitz. The cascaded system is shown in Figure 17.

Theorem 4.1 (UGAS Cascaded System) The cascaded systems ¥, and ¥, given by
(123)-(124) are UGAS if:

(Al) The system X, is UGAS and for all 1, =0,
J- I1%2(2, to, X2 (1o D) || dt < G X5 (1) ||) (125)
0

where ¢(+) is a class A~ function.

(A2) The system %, =f,(t,x) is UGAS with a Lyapunov function V(1,x,),
ViR, x #"— A, positive definite (that is V(t,0) =0 and V(t.x,) > 0 for all x,  0)
and radially unbounded. In addition V(t, x, ) must satisfy:

av

0x

Ix: [ <edV(.x1), Vx| =9 (126)

1

where ¢y, 5 > 0. It is also assumed that 8VI0x,(1,X,) is bounded uniformly in t for all
| x, | <, that is, there exists a constant ¢, > 0 such that for all t > 1, > 0:

-
il
Wl <, Vixl<n (127)
X,
(A3) The function g(t, X) satisfies
1GEx) | <O (%2 11) + 0, ([ x2 [)1Ix, (128)

where 0,,0,: %, - R, are continuous.
Proof. See Theorem 2 in Panteley and Loria (1998). ]

Thanks to this theorem an observer-controller for station-keeping of ships and
rigs can be designed in three steps by considering the error dynamics as a cascaded
system (Loria, Fossen and Panteley (2000)):

1. Design of a UGAS observer represented by the ervor dynamics: %, = .1,(t, X} and
check Assumption Al.
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2. Design a UGAS full state feedback controller represented by the error dynamics:
X, = f,(t, X) and check Assumption A2.

3. Replace the states x in the controllers with the estimated states X and write the
error dynamics of the closed loop system in the form %, =1f,(t,X) + G(t, X)X,
where G(1.X)X, represents error terms due to the estimation errors. Check the
growth rate condition given by Assumption A3.

4.2.1. Main Result
The output feedback controller (PD-type + bias compensation):

e=1f—1n

) o (129)
1= —JI(W())Kpé — K ;v — I ()b

where n,=constant is UGAS when used in conjecture with the passive nonlinear
observer in Section 3 (Loria, Fossen and Panteley (2000)).

4.2.2. Stability Analysis

We will demonstrate the 3 steps design procedure by reviewing the results of Loria,
Fossen and Panteley (2000). In this work the passive observer of Section 3 represents
the x,-dynamics. The observer error dynamics is conveniently written as:

i1 r-m —,‘},M'l-l(u‘x(r))ﬁa —%J"‘(w{r))m{w(zn M LI (0) [0
i R1070)) K, —K,C, 0 if
£ 0 —K, A.-K,C, 0 &
b 0 1k, 0 T ! b
¢ ’ (130)
%y = A, (Y(D)X, (131)

where |(f)| < +n is bounded. The observer error dynamics is UGES and therefore
UGAS if the observer gains K; (i =1, 2, 3,4) are chosen such that:

QW) =—A,W®) + A, W(1)>0, Vi (132)
Moreover V,=x3x, yields ¥, = —x;Q (J(0)x, <0, Vx, #0. UGES can also be
obtained by using the passivation design in Section 3. Hence, it is straightforward to
verify that Assumption Al is satisfied since | x, ()| < 4,[|X,(to) | e~ *2(""*0) where 4,

and 4, are two nonnegative constants. Therefore we can choose ¢([|x2(70)} ) =

Al Az 1% o(t0) |-
Next, consider the full-state feedback controller:

e=n—1, (133)
t* = — J'(Y()Kre — K,y — I (Y(1)b (134)

where #1, = constant. Hence:
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V= ;1) (""My +b7b + ETE + e7K,¢) (135)
Vo=vIMyv+b"b+¢7¢ +e"K, e
= VD + Kv— b T b+ LA, + A

<0 (136)

GAS of the origin e =0 then follows by invoking Krasovskii-LaSalle’s invariance
principle. Notice that V,=0 is equivalent to v=&=b=0. The closed-loop error
dynamics is:

v -M'D+K) —M U)K, 0 0 v
é J(Y(1) 0 0 0 e
38 0 0 A, +AT 0 £
b 0 0 0 —(T '+T "dlp

0 (137)
X, = A (X)X, (138)

The conditions of Assumption A2 are easily verified by noticing that V, =xJP.x,
with P, =block-diag{M.K,, LI}, yields V.= —x!/Qx, with Q = block-diag
{D+K,;,0, —(A,+Al), T '+T 7} Hence,

I;m'c%x{_ as Kopnes 1} (139)
min{m,,, k,,, 1}

where my, and k,,, are the maximum eigenvalues of M and K,, and m,, and k,,, are
the minimum eigenvalues of M and K. We also see that
€y =max{my, Ky, 1} (140)

Finally, we replace the states variables in the controller * with the estimated states.
Moreover:

e=q—mny (141)
= —J'Y(OKpe — K7 — IT(y(0)b (142)

implying that:
T=1*+ G(x,)x, (143)

This gives us the expression for:
G(x) =Ky, I W (@0)K,, 0, I (y(0))] (144)

The growth rate condition of Assumption A3 is satisfied with #, = constant and 0,=0
since the rotation matrix J(i()) is bounded for all |y(1)] < .

4.2.3. Bias Compensation versus Integral Action

Notice that the control law (142) compensates the unknown bias b = constant by
using the observer estimate b (integral of the estimation error) and a nonlincar
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separation principle. An alternative approach is to use a cascaded design and constant
parameter adaptation to estimate b. Consider the integral controller motivated by
(142):

= — JTWD)Kpé — K 9 — I Q(0)b* (145)
b* =TIQ@®W, T'>0 (146)

where integral action is obtained by using the estimate b* (integral of the state variables/
tracking errors). In this case the closed-loop system X, =f,(f,x) takes the form:

My + (D + K )v + IT(W(0)K e = — JT(y(¢))b* (147)
b* = CIW(H)v (148)

where b* =b*—b*. A Lyapunov function V,=W,+ 1/2(b*)"T'b* where
W,=x"Px, and P,=block-diag{M,K,, LI}, yields V,=—x{Qx,<0 with
Q, = block-diag{D +K,,0, — (A, + Al), T ~*+T "}. Again UGAS can be proven
and convergence of by b* to b by using the result of Loria, Fossen and Teel (1999) or
Fossen, Loria and Teel (2000) for nonlinear nonautonomous systems where V> 0 and
V< 0 is only negative semi-definite.

In a practical design it is advantageous to use b* instead of b since the integral of
the observer estimation error is more high frequent and therefore oscillate more in
steady-state than the signal b*. This is observed in regulation of full scale ships (DP)
where the desired position and heading reference are kept constant. The same type of
oscillation is also documented in experiments with a model ship, see Loria, Fossen
and Panteley (1999) for more details. The main reason for this is the stochastic behavior
of the environmental disturbances (wind, waves and currents). These phenomena are
hardly observed in a deterministic computer simulation.

4.2.4. Experimental Results

Experimental results with a model ship are reported in Loria, Fossen and Panteley
(1999). The experiments document that the nonlinear separation principle holds since
the bias estimator manage to estimate a large off-set in the ship model. The physical
bias is generated by using a ducted fan producing wind loads.

5. Weather Optimal Passive DP

In this section a new principle for weather optimal positioning control is presented.
This is based on Fossen and Strand (1999).

5.1. Introduction

Conventional DP systems for ships and free-floating rigs are usually designed for
station-keeping by specifying a desired constant position (x,, y,) and a desired constant
heading angle ¥,. In order to minimize the fuel consumption of the ship the desired
heading i, should in many operations be chosen such that the yaw moment is zero.
For vessels with port/starboard symmetry this means that the mean environmental
force due 1o wind, waves and currents will attack through the center line of the vessel
in order to produce a zero yaw moment. Unfortunately, it is impossible to measure or
compute the direction of the mean environmental force with sufficient accuracy. Hence,
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the desired heading y, is usually taken to be the measurement of the mean wind
direction which can be easily measured. In the North Sea, however, this can result in
off-sets up to 30 degrees from the true mean direction of the total environmental force.
The main reason for this is the unmeasured current force component. Hence, the DP
system can be operated under highly non-optimal conditions if fuel saving is the issue.
A small off-set in the optimal heading angle will result in a large use of thrust.

Another approach for computing the weather optimal heading i, is to monitor
the tesulting thruster forces in the x- and y-directions. Hence, the bow of the ship can
be turned in one direction until the thruster force in the y-direction approaches zero.
This method is appealing but the main catch in doing this is that the total resulting
thruster forces in the x- and y-directions have to be computed since there are no
sensors doing this job directly. The sensors only measure the angular speed and pitch
angle of the propellers. Hence, the thrust for each propeller must be computed by
using a model of the thruster characteristic resulting in a pretty rough estimate of the
total thruster force in each direction. Another principle, proposed by Pinkster and
Nienhuis (1996), is to control the x- and y-positions using a PID feedback controller,
in addition to feedback from the yaw velocity, such that the vessel tends towards the
optimal heading. This principle, however, requires that the rotation point of the vessel
is located in a certain distance fore of the centre of gravity, or even fore of the bow,
and it also puts restrictions on the thruster configuration and the number of thrusters
installed.

This section describes the design of a new concept for weather optimal positioning
control (WOPC) of ships and free-floating rigs, see Fossen and Strand (1999) and
Strand (1999). The control objective is that the vessel heading should adjust
automatically to the mean environmental disturbances (wind, waves and currents)
such that a minimum amount of energy is used in order to save fuel and reduce
NO,/CO,-emissions without using any environmental sensors. This is particularly
useful for FPSOs which can be located at the same position for years. Also DP
operated supply vessels which must keep their position for days in loading/off-
loading operations have a great WOPC fuel saving potential. An extension of WOPC
to tracking control of ships in transit is found in Berge (1999). Other useful references
on nonlinear tracking control are Berge and Fossen (1998), and Godhavn, Fossen
and Berge (1998).

Nonlinear and adaptive backstepping designs are used to derive the WOPC
system. The concept of WOPC can also be implemented by using other control
methods, e.g. feedback linearization.

The key feature of the WOPC is that no information about the environmental
disturbances is required. This is important since the mean environmental disturbances
acting on a floating vessel cannot be accurately measured or computed. We show
that the ship can be exponentially stabilized on a circle arc with constant radius by
letting the bow of the ship point towards the origin of the circle. In order to maintain
a fixed position at the same time, a translatory circle center control law is designed.
Moreover, the circle center is translated on-line such that the Cartesian position is
constant while the bow of the ship is automatically turned up against the mean
environmental force (weather-vaning). This approach is motivated by a pendulum in
the gravity field where gravity is the unmeasured quantity. The circular motion of
the controlled ship where the mean environmental force can be interpreted as an
unknown force field can be programmed to behave as a pendulum in the gravity
field, see Figure 18.
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l l l Graviy ield

Pendulum

Force field due to
wind, waves and current {unknown)

Figure 18. Weather optimal positioning principle: Equivalent to a pendulum in the gravity
field, where gravity is the unmeasured quantity.

5.2. Mathematical Modeling
5.2.1. Ship Model

In this section we consider a low-speed ship model in 3 DOF:

Mv + C(v)v + D)y =7 + W (149)

i=J)wv

where the Earth-fixed position (x, ) and heading y is represented by n =[x, ), Y17 and
the vessel-fixed vessel velocities are represented by v =[u.vr]". The origin of the
vessel-fixed frame X¥Z is located at the vessel center line in a distance x¢ from the
center of gravity. From the low-speed assumption, which is applied in the Lyapunov
stability analysis, M=M7 >0, M=0 and D(») >0, VveR>. 7€ R3 is the control
vector of forces in surge and sway and moment in yaw provided by the propulsion
system. Unmodeled external forces and moment due to wind, currents and waves are
lumpced together into a vessel-fixed disturbance vector we 3.

5.2.2. Polar Coordinates
The Cartesian coordinates (x, y) is related to the polar coordinates by:

X =Xxqg+ pcosy (150)
y=yo+psiny (151)
where (x,. ¥,) is the origin of a circle with radius p and polar angle y:

p= Vx —x0)” + (v — yo) (152)
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¥ = atan2((y — yo), (x — X)) (153)
Time differentiation of (150) and (151), yields:
X=Xy + pcosy— psinyj (154)
$= o+ psiny + peosyy (155)
Define the state vectors
Po 2 [Xo0, yo]" (156)
x£[p, 7, y]" (157)

From (154) and (155) a new kinematic relationship can be written in terms of the
vectors py and x as:

1 =J(H(p)X + L, (158)
where
1 0 0 1 0
H(p)=]0 p 0], L=|0 1 (159)
0 0 1 00

From (158) the Cartesian kinematics in (149) can be replaced by a differential equation
for the polar coordinates:

Fé T(x)v — 'r(x)R'f'(u,p)l.pq (160)

where
T)2H (0" (NIWY)
=H" '(p)J"(y—¥) (161)
Note that the conversion between Cartesian and polar coordinates is only a local

diffeomorphism, since the radius must be kept larger than a minimum value, ie.
P > Pmin > 0 1n order to avoid the singular point p = 0.

5.2.3. Ship Model Transformation

The ship model (149) can be represented by polar coordinates by using (160) and
substituting

v=T " '(x)x + J"Lp, (162)
v=T ()% + T '(x)x + I "L, + I"Lp,, (163)

such that:

L[\-‘h’* +CWY+DWv=1+w |

0,(1}(] (164)

M, (0% + C,(v. X% + Dy (v, )% =T~ Tq(v, X, po, o) + T e+ T Tw|
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where
M, (x)=T "xMT ~!(x) (165)
C,(v,x)=T ~TNC(v) —MT ~'TENT ~ '(x) (166)
D.(v.x)=T "x)DWT '(x) (167)

q(v, X, o, Po) = MIT()Lpo + MI(Y)Lpo + [C(H) + DWW ' W)Lpo  (168)
where M, (x), C,(v, x) and D,(v,x) can be shown to satisfy:
M, (x)=MI(x)>0, Vx
D,.(v,x)>0, Vx
The ship dynamics does also satisfy the skew-symmetric property:
7T(M, —2C)z=0, Vz,X (169)
The expression for T can be written as:

T =H YW (y—y)—H Y-

= —pl(p)— G —yY)H ~ (p)S I — V) (170)
where:
0 0 0
ne=o L o a7
p
0 0 0
and J(«) satisfies:
J(o) = aJ()S, (172)

5.2.4. Disturbance Modeling

The steady-state low-frequency motion of the ship and also the ship’s equilibrium
position depend on the unknown environmental loads acting on the vessel. Let the
environmental loads due to wind, waves and currents be represented by:

e a slowly-varying mean force F, which attacks the ship in a point (/,, ;) in body-
fixed coordinates.

e a slowly-varying mean direction f,, relative to the Earth-fixed frame, see
Figure 19.

The term slowly-varying simply states that the mean environmental forces are slow
compared to the vessel kinematics and dynamics. The slowly-varying terms include
2nd-order wave-induced disturbances (wave drift), currents and mean wind forces.
The WF motion is assumed to be filtered out of the measurements by using a wave filter.

Since there are no sensors which can be used to measure (F,, f.) and (/1))
with sufficient accuracy it is impossible to use feedforward from the environmental
disturbances. This motivates the following assumptions:

Al: The unknown mean environmental force F, and its direction f, are assumed to be
constant or at least slowly-varying.

A2: The unknown attack point (I, 1) is constant for each constant F,.
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North

pcosy

1 > East

| S
(%, 3) psiny

Figure 19. Environmental force F, decomposed into the components w, and w5.

Discussion: These are good assumptions since the ship control system is only supposed
to counteract the slowly-varying motion components of the environmental disturbances.

From Figure 19 the body-fixed environmental load vector we #* can be expressed as:

wi () F, cos(f, — ¢)
w=|w,({) |= F,sin(f, — ) (173)
w3 () I.F, sin(f, — ) — I,F,cos(B.— )

Notice that the environmental loads vary with the heading angle v of the ship.
Moreover:

F.=/w? + w2 (174)

B.=1y +tan " Y(wylw,) (175)
The environmental forces X,, and Y, with attack point (/,, [,) are shown in Figure 19.
It should be noted that the attach point /, = I,() and [, = [ (/) will also change with
the yaw angle . This relationship will be complicated function of the hull and
superstructure geometries.

5.3. Weather Optimal Control Objectives

The weather optimal control objectives make use of the following definitions
(Fossen and Strand (1999)):

Definition 5.1 (Weather Optimal Heading) The weather optimal heading angle Wopt IS
given by the equilibrium state where the yaw moment wx(,,,) =0 at the same time as
the bow of the ship is turned up against weather (mean environmental disturbances), that is
wWo(iop) = 0. This implies that the moment arms ({1, ) = constant and I (., ) = 0, and-
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Wy (':‘f}npi) 1‘1’
W(top) = | W2(Wop) |=| O
"1"'.3 (ltbupt) 0

Hence, the mean environmental force attacks the ship in the bow (minimum drag
coefficient for water and wind loads).

Definition 5.2 (Weather Optimal Positioning) Weather optimal positioning (station-
keeping) is defined as the equilibrium state where

W 1 (lr'rfﬂpl} = - f;a "1'"2 (w(\pl) = H”](wupl) = {v(lpupt) = (] (] 76)
(weather optimal heading) and the position (x,y) = (x4, y4) is kept constant.
These definitions motivates the following two control objectives:

O1: Weather Optimal Heading Control (WOHC): This is obtained by restricting the
ship to move on a circle with constant radius p = p, and at the same time force
the ship’s bow to point towards the center of the circle until the weather optimal
heading angle y =/, is reached, see Figure 20. An analogy to this is a pendulum
in gravity field, see Figure 18. The position (x, ) = (x¢ + pcos 7y, ¥o + psiny) will
vary until the weather optimal heading angle is reached. This is obtained by
specifying the control objective in polar coordinates according to:

pg = constant (177
F4=0 (178)
Resulfing ervironmental
forces in the x- ond y-direction
{earth-fixed)

\ﬂ,‘s >0

Srabre
equitliorfurm
poirt
wy= -F,
j u=uy=0
uL< 0

Figure 20. Principle for weather optimal heading control (WOHC).
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Va=m+7y. (179)

Discussion: The requirement p, = constant implies that the ship moves on a circle
with constant radius. The second requirement , =0 implies that the tangential
speed pj is kept small while the last requirement Y, = 7 + y ensures that the ship’s
bow points towards the center of the circle.

O2: Weather Optimal Positioning Control (WOPC): In order to maintain a fixed
Earth-fixed position (x, y) = (x4, y,4), the circle center po = [xo, yo]" must be moved
simultaneously as Control Objective O] is satisfied. This is referred to as frans-
latory circle center control.

We will derive a nonlinear and adaptive backstepping controller which satisfies
Ol and O2.

5.4. Nonlinear and Adaptive Control Design

In this section a positioning controller is presented by using the polar coordinate
representation of the ship dynamics. Backstepping is used to derive the feedback
controller (Krsti€ et al. (1995)). The control law will be derived in 3 successive steps:

1. Nonlinear backstepping (PD-control): the ship is forced to move on a circle
arc with desired radius p,, with minimum tangential velocity pj and desired
heading i,.

2. Adaptive backstepping (PID-control): this is necessary to compensate for the
unknown environmental force F,.

3. Translatory circle center control: the circle center (x,, yo) is translated such that
the ship maintains a constant position (x,, y4) even though it is moving on a
virtual circle arc. Hence, the Captain of the ship will only notice that the ship
is rotating a yaw angle y about a constant position (x,, y,) until the weather
optimal heading y,,, is reached.

5.4.1. Nonlinear Backstepping (PD-Control)

A general positioning controller is derived by using vectorial backstepping. The
tracking objective is specified in polar coordinates by the smooth reference trajectory
X =[pa, 74, ¥a]" € C* where:

x{f'! i.'J': ifl' € "y”c

Since the transformed sysiem (164) is of order 2, backstepping is performed in two
vectorial steps resulting in a nonlinear PD-control law. First, we define a virtual
reference trajectory as:

X, 2 X, — Az,, (180)

where z, =X — X, is the Earth-fixed tracking error and A >0 is a diagonal design
matrix. Furthermore, let z, denote a measure of tracking defined according to:

2, 2%x—x%, =2, + Az, (181)
From (181), the following expressions are obtained:

X =12, +X, (182)
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XK=12,+X, (183)
This implies that the vessel model (164) can be expressed in terms of z,, X, and X, as:
M,z,+Cz,+D,2z, =T T4+ T Tg(*)— M, — C,%x, — D% +T "w
(184)
Step 1: Let z, be the first error variable, which from (181) has the dynamics:
Z,=—Az, +2, (185)
A Lyapunov function candidate (LFC) for the first step is:

V,=—z]K,Az, + 2Kz, (187)

where K, =K7] > 0 is a constant design matrix.

Step 2: In the second step we choose a LFC motivated by the “pseudo™ kinetic energy,
that is:

’7 Vo=V + ;Z{I\’ixzz-: M, = M:I: > UJ (188)

Time differentiation of ¥, along the trajectories of z, and z, yields:
Vo= Vi+ M, + 25 M, 7, (189)
which by substitution of (187) and (184) yields
Vo= —2z{K,Az, + ;:{(Mx —2C )z, — 25D, 2, + 22T ~'w
b2y (K,z, + T "t+T "q(+) —M, %, —C.x, —D,x,) (190)
By using the property (169) and choosing the nonlinear PD-control law as:

T Tt=M,X, + C.%, +D,x, ~K,z, —K,z, - T " "q(") (191)

where K, > 0 is a strictly positive design matrix, we finally get:

Vo= — 27K, Az, —23(K, + D)z, +27 T Tw (192)

Notice that the dissipative term z3D,z, > 0,V z, # 0 is exploited in the design as it
appears in the expression for V,. With the control law (191) the closed-loop dynamics
becomes:

Mz, +(C,+ D, +K))z, +K,z, =T " "w (193)
The error dynamics of the resulting system becomes ron-autonomous since:

K, 0:.5|]2 K,A 0;.5
03x3 M, Z a 0'_1><'_1 (jx+Dx+Kd

Z,

_Zz
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0;, K, z 0,
oo IR | R ™ B ™ (194)
K, 05|z | [T

¢
MH(X)E = — H (X, V)2 + 52+ BX)W (195)
where the different matrices are defined as:
K 0.,
M) =HT)=| * (196)
"3 =3 I'\] x (X}
K A 0, '
A= 7 i3 >0 (197)
05,5 C.(x,v)+D.(x,v) +K,
g —gr| Ve K (198)
~K, 0,,;
2 01 199
B(x) = .
(%) T-"(x) (199)

In the absence of disturbances, w = 0, the origin z = 0is uniformly locally exponentially
stable (ULES) according to Lyapunov. Global results cannot be achieved due to
the local diffeomorphism between the Cartesian and polar coordinates, hat is the
transformation matrix T(x) is singular for p = 0.

With disturbances w # 0, the closed-loop system is ISS. In the next section, we will
show how adaptive back-stepping (backstepping with integral action) can be used to
obtain ULES for the case of a non-zero disturbance vector w # 0.

5.4.2. Adaptive Backstepping (PID-Control)

If the disturbance vector w have a non-zero mean., this will result in a steady-state
offset when using the nonlinear PD-controller. Since the ship is restricted to move on
a circle arc where w can be viewed as a force field there will be a stable and unstable
equilibrium point on the circle arc (similar to a pendulum in the gravity field). The
stable equilibrium point is, see Figure 20:

—1
w=¢F=| 0 |F (200)
0
Since the disturbance F, is assumed to be slowly-varying, we can apply adaptive

backstepping to obtain integral effect in the system. Thus. in the analysis it will be
assumed that

F,=0 (201)
Let the estimate of F, be denoted as F,, and F= F,— F,. An additional step in the

derivation of the backstepping control must be performed in order to obtain an
adaptive update law for F,. Moreover:
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Step 3: The adaptive update law is found by adding the squared parameter estimation

error to V,. Moreover:
’T{—Vz l F2,6>0 (202)
20

EE (203)

where

l/’u =0+ ]_
a
The nonlinear control law (191) is modified to:

t=TT(M,X, + C,%, + D%, — K,z —Kuz,) — q(*) — ¢ F, (204)

where the last term ¢F, provides integral action. Hence, the z,-dynamics becomes:

M,z, +(C, + D, +K,)z, +K,z, = —= T T§F, (205)
This implies that:
Vy= — 27K, Az, — 23K, + D)1, — 23T ~"¢F, + L F.F,
()
= —AK, Az — (K, + D)y + E(—6"T 2,4 F) (206)

The adaptive law F f is chosen as:

| f.=0¢™ 'z,,0>0 (207)

such that

[ V2= 2K, An, — 2K, + D), <0 (208)

The non-autonomous error dynamics for the adaptive backstepping controller can be
written:

MX)L=][— A (X,V) + Lz + BX)F, (209)
F,= —6BT(x)z, (210)
where
By | ] @11
~T T(x)¢

In order to satisfy Control Objective O1 we must choose the controller gains accord-
ing to:

ky 0 0 ky O 0O o, 0 0
K,=| 0 0 0 [Ks=|0 ky 0 [A=[0 0 0 (212)
0 0 Ky 0 0 ke 0 0 i
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Notice that k,, = 4, =0. This implies that the ship is free to move on the circle arc
with tangential velocity py. The gain k,, > 0 is used to increase the tangential damping
(D-control) while the radius p and heading i are stabilized by using PD-control.

Semi-Definite Matrices
Since the controller gains k,, and 4, are chosen to be zero, the matrices:

K,>0, A>0 (213)

are only positive semi-definite resulting in a positive semi-definite V5. Uniform local
asymptotic stability (ULAS) of the equilibrium (z, F,) = (0, 0) can, however, be proven
since the system is input-to-state (1SS) stable. We therefore consider the error dynamics
of a system with outputs (z,,, z,) where:

z,,=Ez, (214)
E 100 (215)
1o o 1

z,,= —EAz, + Ez,
= —(EAE")z,, + Ez, (216)

where

This implies that:

Notice that the last step is possible since the diagonal matrices A = diag{/,,0, 15}
satisfies:

AETz,, = Az, (217)

Hence, the error dynamics (209)—(210) can be transformed to:
M), =[— H (X, V) + L]z, + B,(X)E. (218)
F.= — e, (219)

where z, = [z1,,25]" and:

N (EK,ET) 0,.,
M(X) = M (X)= (220)
0., M, (x)
EK ET) (EAE” 0,,
A (X, v) = (REE ) € ) 23 0 (221)
- 03:(2 C}(xr v]+Dx(x“")+Kd
. 0,,, KJE
SFo= —FT= 222
' ’ [—K,,ET 0353 I 22
2,(X) 02 (223)
A AX - :
T "(x)¢

We have here used the fact that K E"z,, = K.z, for K, =diag{k,,,0,k,,}.

p1>
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Non-Autonomous Lyapunov Analysis
Recall that the Lyapunov function V5 is only semi-definite since K, is positive
semi-definite. Since the system is [SS asymptotic output tracking is guaranteed by:

v, :é i'z,T,(EKpET}Z,, +2TM.z, + F§]> 0 (224)
a

Vi = — 2, (EK,E") (EAE")z,, — 2} (K, + D,)z, < 0 (225)

where EK,E” > 0 and EAE” > 0. Hence, z,,,2,. F,e.#.,. ULES of the equilibrium
point (z,,,z,, F,) =(0,0,0) follows by using the stability theorem of Loria, Fossen
and Teel (1999) for nonlinear non-autonomous systems where V5 > 0 (positive definite)
and ¥, <0 (negative semi-definite). The reason that ¥ is only negative semi-definite
is that a negative term proportional to — F2 is missing in the expression for V;.

We are now ready to state the main theorem of this section.

Theorem 5.1 (Main Result: ULES Weather Optimal Position Control) The equilibrium
point (z,,z,, E)=(0,0,0) of the nonlinear system (218) and (219) with control law
(204) and parameter adaptation law (207) is ULES.

Proof. See Fossen and Strand (1999). ]

5.4.3. Transiatory Circle Center Controller

The adaptive backstepping controller of the previous section satisfies control
objective Ol, that is weather optimal heading control. Weather optimal position
control, control objective O2, can be satisfied by moving the circle center p, = [x4, ¥o]"
such that the ship maintains a constant position p =[x, y]".

In order to meet the fixed position control objective, an update law for the circle
center p, must be derived. Recall that the Cartesian Earth-fixed position of the ship

is given by:
=L"y | (226)
[ p=17n |

where L is defined in (159). Let p £ p — p, denote the corresponding deviation from
the desired position vector p; £ [x,, y4]”. The desired position can either be constant
(regulation) or a smooth time-varying reference trajectory. The control law for transla-
tion of the circle center is derived by considering the following LFC:

|
V,=50"D | (227)
where
V,=p"(p—pa) =" (L5 —pa) (228)

By using (158), L'L =1,, , and x =7, + X, we get:
V,=p"[L"(J()H(p)X + Lpo) — Pl
=p"(Po — Pa+ LTIMH(p)X,) + pTLTI(»)H(p)z, (229)

Now, by choosing the circle center update law as:
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Po=Ps — L"IH(p)X, — ko (230)

where k, > 0, we get:
Vo= —kd"p+ B L IG)H(p)z; (231
Unfortunately a cross term in p and z, will appear in the expression for Vs, if (230) is

applied. In order to guarantee that V3, <0, we must modify the weather optimal

controller (204) and add a negative term — p”p to the expression:

l./zlr - va(P:KpET) (EAF‘ T)er - ,:’.‘(Kd + Dx)zz (232)

to remove the cross term.

5.4.4. Weather Optimal Position Control (WOPC)

The cross-terms involving pand z, in ¥/, can be removed by modifying the nonlinear
controller (204) to:

T= I-r]..(:\/[xir + Cxxr + l)x *r - szl - KJZZJ — ll( -) - ¢ﬁ(‘

o (233)
—T"E" ()3 ()L

The last term in = implies that:
3= — 21, (EK,ET) (EAE )z, — 2] (K; + D)z, — p"L"I()H(p)z,  (234)

Consider the LFC:

[ Vwopc = I/Rr * Vp (23 5)

Hence:

If"wnpc = z'{',(F,KPET‘.I (EAE")z,, —2f (K;+D,)z, — k,p"p J (236)

and therefore the equilibrium point (z,,,2,, F,, p) = (0,0, 0, 0) of the reduced order
system is ULES.

The term p, is needed in the expression for g(+). This term is computed from
(230) as:

i.)Cl - ijd ku (p - pd) [‘IJ(}.)II(.U)Xr - I‘T'.'(‘:‘I}I [(p}xr . l’r J{}'}“{P )Xr (237)

3.5. Passivity Interpretation of the WOPC
The WOPC is in fact a passivation design. This can be seen from the total system
which is governed by the equations:

7, = — Az, +1, (238)
M2, +(C,+ D, + Kz, + K,z = — T "oE—H (I T()Lp  (239)
F.—o¢p™T 12, (240)
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Figure 21. Passive blocks of the positioning controller.

p= —k,p+ LTI(»)H(p)z, (241)

Block diagrams of the passive interconnected systems are shown in Figures 21 and 22.

5.6. Experimental Results

The experimental set-up is shown in Figure 23. The experimental results are
transformed to full scale according to Table 1 in Section 3.6. In the scaling we used
L,=70L,, meters and m, =4500 tones. A ducted fan is used to generate a slowly-
varying or constant wind disturbance. A video from Norwegian national TV showing
the experiment is available at URL: hitp://www.itk.ntnu.no

5.6.1. Experiment 1: Weather Optimal Heading Control (WOHC)

In the first experiment the ship was allowed to move on the circle arc (circle center
controller was turned off). This is referred to as WOHC. The fixed origin and circle
arc are shown in Figure 24. Notice that the initial heading is approximately 30 degrees,
see Figure 26, while the position (x,y) ~ (13, —43), see Figure 25. These values are
the ones obtained when the fan was initially directed in 210 degrees (opposite direction
of the ship heading).

After 3000 seconds the fan was slowly rotated to 165 degrees corresponding to a
weather optimal heading of — 15 degrees, see Figure 26. During this process, the ship
starts to move on the circle arc (with heading towards the circle center) until it is
stabilized to its new heading, that is — 15 degrees. The new position on the circle arc
is (x,) ~(3,20). This clearly demonstrates that the ship heading converges to the
optimal value (copies the dynamics of a pendulum in the gravity field). This is done
without using any external wind sensor.



Nonlinear Passive Control and Observer Design for Ships 177

p

B

\ HivHo+ Hy )

#,

Figure 22. The weather optimal position controller formulated as a passive interconnected
system.
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Figure 23. Experimental set-up showing the directions of the wind and wave generators,

In the next experiment, we will show how the circle center can be translated on-
line in order to obtain a constant position (x, y).

5.6.2. Experiment 2: Weather Optimal Position Control (WOPC)

In the second experiment the ship should maintain its position (circle center
controller is turned on). This 1s referred to as WOPC. The performance during station-
keeping (dynamic positioning) is shown in Figure 27 while the translation of the circle
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Figure 24. 'WOHC experiment showing the circular motion of the ship when the circle center
controller is turned off (WOHC).
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North [m]
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Figure 25. WOHC experiment showing the (x, y) position of the model ship {m) when the fan
is rotated.

is shown in Figure 28. The position controller works within an accuracy of + 1 meters
which is the accuracy of the position reference systems.

Again the weather optimal heading is changed from approximately 23 degrees to
2 degrees but this time without changing the position (x, y’) of the ship. The position
deviations and the weather optimal heading are shown in Figure 29. These values are
obtained by moving the fan from an initial angle of 203 degrees to 182 degrees.

The last plots (Figure 30) shows the deviation for the radius regulator (upper plot)
and then how the circle center (xq, ¥o) is changed on-line by the circle center control
law (lower plots) in order to obtain a fixed position (x, y). The experiment shows that
the ship will turn up against an unknown disturbance (wind) at the same time as the
ship maintains its position.
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Figure 26. WOHC experiment showing the performance of the radius regulator (upper plot)
and weather optimal heading (lower plot) versus time (s).
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Figure 27. 'WOPC experiment showing station-keeping to (x,, ;) = (0, 0}.
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Figure 28. 'WOPC experiment showing how the circle center is moving during station-keeping.

6. Conclusions
In this report the most recent results on passivation designs for ships have been
discussed. This includes methods for:

e Nonlinear modeling of ships

Passive observer design

Passive dynamic positioning (DP) systems
Weather optimal passive DP
Experimental results

Appendix A: Definitions
The definitions of dissipativity and passivity used in this article are adopted from
Sepulchre et al. (1997).

Definition D1: Dissipativity: Assume that associated with the system H with input
ueZ™ and output ye #™ is a function w: %™ x £" — A, called supply rate, which 1s
locally integrable for every ue %™, that is, it satisfies [71|w(u(t), /(1))|dt < oo for all
t, < 1;. Let X be a connected subset of 92", where n is the number of states and which
contains the origin. We say that the system is dissipative in X with the supply rate
w(u, y) if there exists a function S(x), S(0) = 0, such that for all xe X

S(x)=0 (242)
and

-

S(AT)) — SEAO) < J i, y)dr (243)
0

for all ue #™ and T =0 such that x(f)e X for all 1[0, 7]. The function S(x) is then

called a storage function.

Definition D2: Passive: The system H is said to be Passive if it is dissipative with the
supply rate w{u, ) = MT}’_
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Figure 29. WOPC experiment showing the North and East position accuracies (upper plots)
and weather optimal heading (lower plot) versus time (seconds). The position accuracy is within
+ 1 m while the heading changes from 23 degrees to 2 degrees as the fan is rotated.

Definition D3: Input-Feedforward Passive: The system H is said to be Input-Feedforward
Passive (IFP) or Input Strict Passive if it is dissipative with supply rate
w(w,y) =u"y — Ju"u for some Ze #. >0 means that the system has an excess of
passivity and 4 < 0 means that the system has a shortage of passivity.

Definition D4: Output-Feedback Passive: The system H is said to be Output-Feedback
Passive (OFP) or Output Strict Passive if it is dissipative with supply rate
w(u,y) =u'y — py"y for some pe#. p >0 means that the system has an excess of
passivity and p < 0 means that the system has a shortage of passivity.
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Figure 30. WOPC experiment showing the deviation for the radius regulator (upper plot) and
the translation of the circle center (x,, o) (lower plots) versus time in seconds. The radius
deviation is within + I m during the rotation of the fan.
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