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In this paper a method for nonlinear robust stabilization based on solving a bilinear
matrix inequality (BMI) feasibility problem is developed. Robustness against model
uncertainty is handled. In different non-overlapping regions of the state-space called
clusters the plant is assumed to be an element in a polytope which vertices (local
models) are affine systems. In the clusters containing the origin in their closure, the
local models are restricted to be linear systems. The clusters cover the region of
interest in the state-space. An affine state-feedback is associated with each cluster.
By utilizing the affinity of the local models and the state-feedback, a set of linear
matrix inequalities (LMIs) combined with a single nonconvex BMI are obtained
which, if feasible, guarantee quadratic stability of the origin of the closed-loop. The
feasibility problem is attacked by a branch-and-bound based global approach. If the
feasibility check is successful, the Liapunov matrix and the piecewise affine
state-feedback are given directly by the feasible solution. Control constraints are
shown to be representable by LMIs or BMIs, and an application of the control design
method to robustify constrained nonlinear model predictive control is presented.
Also, the control design method is applied to a simple example.

1. Introduction

Robust controller design is a key factor for implementing controllers. Robust design
becomes particularly important, but also challenging, for nonlinear uncertain systems,
the outset for this work.

Multi-model systems (Murray-Smith and Johansen 1997) as described within the
framework of operating regimes and local models (Johansen and Foss 1997a) is an
efficient way to develop nonlinear models. The concept is based on a divide and conquer
strategy. The operating range of interest is divided into a set of operating regimes, each
with a local model associated to it. A global model, i.e. a model that is valid under all
operating conditions of interest, is thereafter formed by a convex combination of the
local models. In many cases the local models can be quite simple, they may for example
be affine or linear models. Another interesting observation is the fact that the concept
coincides with engineering design in which partitioning, i.e. the division of a problem
into manageable parts, is a dominating design methodology. Further, there exists a
sound theoretical foundation based on approximation analysis for the approach
(Johansen and Foss 1993). Finally, software is becoming available to support
development of multi-model systems (Johansen 1996).
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An interesting feature of multi-model systems is the fact that they lend themselves
to powerful analysis techniques at least when the local models are affine. This forms
one of the cornerstones for this investigation.

This work presents a method for robust controller design, where it is assumed that
the real system can be described within a set of multi-model systems. The proposed
procedure exploit this knowledge. The controller is found by a global approach to a
bilinear matrix inequality (BMI) feasibility problem. It is noteworthy that other robust
design procedures also can be recast as BMI feasibility problems (Goh, Safonov and
Ly 1996).

The design method is motivated by, and ideas and results fetched from (Boyd, El
Ghaoui, Feron and Balakrishnan 1994), (Petterson and Lennartson 1997), and
(Johansson and Rantzer 1997).

Integrating the method with other control approaches is also possible. In this paper
we will show how the method can support the design of a robust model predictive
controller (MPC).

The paper is structured as follows:

® After some preliminary notation the paper presents the model class under
investigation. An important issue herein is the definition and discussion of the
uncertainty model.

@ A sufficient condition for robust stability of the origin of the closed-loop, in the
form of an BMI, is developed. This is done by assuming a piecewise affine
state-feedback structure, and then utilizing Liapunov theory and results on matrix
inequalities. Further, we explain a possible way to compute the feedback matrices
and the Liapunov function. This is followed by a numerical example to illustrate
the points made in the theoretical investigation.

® Constraints are important in all control design. A robust stability result, as an
extension of the first result (retaining the BMI structure), is derived for this case.

® The method is integrated with an MPC to show its potential as a means of
robustifying controllers.

® A discussion and some conclusions finalize the paper.

Before continuing, we introduce some notation: A: = B(A = :B) means that B defines
A (Adefines B). Iz ={1,...,M}. f(-,...,-) denotes a function ffAX...XB—C.
P>0(P=0)is short for P=P">0 (P =P"=0). Leta, b € N then, abusing notation,
{a,....b} =0and {c}-. =0ifb<a. R.:= {x € Rlx=0}. x|z = Vx'Hx, where
H>0. N©): = {x|||x]| =€}. % is induced by symmetry.

2. Model uncertainty class

The problem we investigate is to robustly stabilize the origin of a plant which can
be described by a convex combination of affine discrete-time state-space systems. That
is, the plant is assumed to be given by

Xeo1= D, @0, u KYA;jx+ By + ¢),
Jje ;NN
where k=0, xo given, x € X,, CR", u € U,, CR", the local models (A;, B, cj)s are
triplets with elements which have appropriate dimensions, N,, is the number of local
models (subscript m indicates “model’”), the uncertain weights

@ X X Up X N— [0,]],Vj € In,»
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and
> wx, u, k) =1, V(x, u, k) € X,, X U,, X N. 1)
Jje ‘Nlll
Each of the model validity sets X,, and U,, is assumed to be a connected set containing
the origin in its interior.

Throughout the paper we let X, and U, also denote the state- and control constraints,
respectively. The state- and control constraint sets could, however, have been any
connected subsets X, and U, respectively, containing the origin in their interior.

Now, uncertainty is represented by allowing

LU(',‘,‘)': = CU|(',‘,'), .. ey wNm('f"))
to vary within a predefined set ). The uncertainty class .# is defined by means of this
set. Next, Q is defined.

The uncertainty description, with control synthesis in mind, is based on the
assumption that all that is known or utilized about the uncertain weights are their
state-space supports, X; (superscript S indicates “support™). That is, knowledge of the
sets

= U loeub>0yViely, 2
(k) e Uy X R
An example of state-space supports for a 2-dimensional system is shown in the left-hand

part of Figure 1.
Notice that the projection on the state-space for all u € U,, in (2) implies that

nonlinearities associated with the control input will be conservatively handled in the
sense that one loses the ability to exploit possible knowledge of the nonlinearities
associated with the control input. On the other hand, an arbitrary nonlinearity associated
with the control input can, in principle, be handled. In some work only special
nonlinearities are considered, like control input affine type nonlinearities in (Dussy and
El Ghaoui 1997). The easiest remedy for handling nonlincaritics associated with the
control inputs in a less conservative manner (in the sense above) is to delay the control
input one sample and extend the state vector with the one-step delayed control input.
It is unclear, at least in a purely discrete setting, if doing this is going to result in a larger
region of attraction (for the equilibrium at the origin of the closed-loop). If, however,

| )
Xm
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X3
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xS el a4
1

Figure 1. The state-space supports; X{, X3, X3 for an uncertain multimodel system with 3 local
models (left), and the associated 5 clusters X§ to X, (right).
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the discrete system is a result of a time-discretization of a continuous-time system,
which typically will be the case, a sufficiently short discretization period will probably
provide a larger region of attraction by applying this remedy.

Continuing defining the assumed uncertainty class, the following sets are associated
with the state-space supports (2); For all j € In,,

Q= {cblc“o:X,,, X U, X N—[0, 1] and @(x, u, k) >0 only if x € X;°},
i.e. the set of all possible weights for local model number j. Now, let

Q={w=(m]9---’wNm)EQIx---xglﬂml
> wix, u, k) =1, V(x, u, k) € X,y X Up X N},

JjE .me

i.e. the set of all valid convex combinations, and

folx, u, k)= >, wix, u, k) (A;x + Bu + ¢).

Jely,

Finally
M= {f.,|lwe Q).

Thus, .# now denotes the assumed multimodel-based uncertainty class, and
Xit1 € M (X, s, k), VE=0,
where
M (X, us, K): = {x|x =f(x, wi, k) for some fe A ).

An example of how to construct such an uncertainty class is given in Section 5. The
development of generic procedures for obtaining such uncertainty classes, is left for
future research. We do, however, note that the work by (Johansen and Foss 1997a) and
(Johansen and Foss 1997b) provide a seemingly good basis on which to build generic
procedures. This, together with the arguments given in the introduction, has provided
our rationale for using this multimodel-based uncertainty class. There are of course
other uncertainty structures and associated robust design methodologies inciuding
(Dahleh and Diaz-Bobillo 1995), (Zhou, Doyle and Glover, 1996), and (Chen, Scherer
and Allgower 1997). Connections between the uncertainty class given above and others
in terms of representational power and/or other measures, also remain to be clarified.
It may, however, be that the assumed multimodel-based uncertainty class provides
possibilities for representing uncertainties, parametric at least, as well as nonlinearities
(associated with the states) in a manner that allows possibly less conservative robust
controller synthesis (cf. Section 3) than syntheses based on small gain.

Local models with ¢; # 0 are assumed to have no support in some neighborhood of
the origin (see the left-hand part of Figure 1). This amounts to assuming that all the
plants f € .4, and in particular the real plant, satisfies 0 = f(0, O, k) for all k= 0. That
is, the equilibrium state and equilibrium control input are assumed to be known, or, more
to the point, the equilibrium control input for the state setpoint is assumed to be known.

With the state-space supports, X}, we also associate a partitioning, see Proposition
1, of the state space into a set of N, so-called ciusters defined as follows.
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DEFINITION 1 (CLUSTER)

A cluster, X{, is a set on which the same local models have support on the whole
set, such that for any extension, at least one of these local models will not have support
on the extension and/or at Ieast one other local model has support on the extension. A
set A, of local models, or more precisely local model numbers, is naturally associated
with a cluster. Ja

In the right-hand part of Figure 1 the five clusters associated with the state-space
supports given in the left-hand part are shown, in this case; A; = {1}, A, = {1, 2},
A= {2}, As={1,3}and, As= {3)}.

PROPOSITION 1
The clusters partition the model validity set X, i.e.

X,= XS and XENXE =0 when i #, i, j € I,.
Jeln,

Proof:

Take any x € X,,. Then x € X} for some j € Iy, since by (1) x € X7 for some i € I,
Now, take any x € U X{, thenx € X,, since any x in any X¢ must be supported by some

Jely,

local model, and the weights, w(-,-,-), are not defined outside X,,. This proves the exact
covering part. Next, prove the disjointness by contradiction. Assume that the clusters
X and Y satisfies X # ¥ and X N'Y = §. By definition1, this implies, since X N Y # @, that
the same local models have support in both X and Y. Thus, there exists an extension
of at least one of the sets X and ¥, since X # Y, such that no valid local model loses
validity on the extension, contradicting that both X and Y are clusters. o

This partitioning property of the clusters renders them natural candidates on which
to construct a piecewise affine state-feedback. This is described next.

3. Quadratic Stabilization

The aim of this section is to provide computationally verifiable sufficient conditions
for quadratic stabilizability of the origin of the difference inclusion

X+ 1 € A (Xk, Ui, k),

where .# is as defined in Section 2. The outcome of the computation, when successful,
will be a piecewise affine state-feedback controller, and a quadratic Liapunov function
for the equilibrium at the origin of the closed-loop.

3.1. Piecewise Affine State-Feedback

We finitely parameterize the state-feedback, u(x), as a piecewise affine state-
feedback. With the cluster containing the origin and the clusters where the closure
contains the origin—assumed (without loss of generality) to be the first N¢ clusters—
we associate a linear state feedback, i.e. for [ € Iy.

u(x) = K;x when x € X{. (3a)

With all the other clusters we associate an affine state-feedback, i.e. for
le{NZ+1,..,N.}
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u(x) = K;x + k; when x € Xf. (3b)

Since the clusters form a partition of X,, (cf. Proposition 1), the above defined piecewise
affine state-feedback is indeed well defined.

It should be noted that there is, in principle, no problem in associating the piecewise
state-feedback with a different partitioning of X,, than the one associated with the
clusters. For reasons of clarity, however, we restrict the piecewise affine state-feedback
to be associated with the clusters.

3.2. Set Approximations

When formulating BMI conditions for quadratic constrained stabilization, it is
sensible to approximate the clusters, and state- and control constraints using polytopes
or ellipsoids.

Assume that for [ e Iy. the polytope

{x|Ex=0}DXf 4

is used as an outer approximation of Xf. For I € {N2+1, ..., N'}, assume that the
polytope

wlig e} | <0yoxf ©)
is used, and, finally, for I € {N7+ 1, ..., N.}, assume that the ellipsoid
X T E; e;' [X] c
e[l elli]=0ox ©

is used. N? is the number of clusters outer approximated by polytopes.
Furthermore, assume that the state-space model validity- and constraint set X,, is
inner approximated as follows

Oe L1) |l — x|, < 13 C Xon, @
ie N‘F

i.e. by an intersection of ellipsoids where x; . denotes the centers of the ellipsoids, and
N, denotes the number of ellipsoids. An example of an inner approximation to X,, can
be seen in Figure 2. Similarly, we assume

0e L) {ulllu —wi, 7, =13 C U, ®
ie 'Ngu

where U, is the control model validity- and constraint set.

Note that any of the outer approximations (4), (5), and (6), exist for any set, and
that they are the natural outer approximations to choose when formulating LMI
problems for multimodel systems (Petterson and Lennartson 1997; Johansson and
Rantzer 1997).

The inner approximations (7) and (8) also exist for any allowable X,, and U,, and
the origin can be placed in the interior of each of the intersections.

3.3. A BMI for Quadratic Stabilization

In this section, we investigate quadratic stability of the origin of the closed-loop
using the piecewise affine state-feedback (3). We will let U,, = R", i.e. it assumed that
no input constraints are present. The constrained case is deferred to Section 6.
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Figure 2. Example of inner approximation to X,. Note the indicated level curves for
= x. ) Hy (x—x.)=1and (x—x. )Y Hy (x —x,0)=1.

Firstly, we precisely define quadratic stability in the present context. Based on
(Corless 1994), the following definition is adopted.

DEFINITION 2 (CONSTRAINED QUADRATIC STABILITY)
Given an uncertain system

Xer1 =[x, k) (9a)
fe M (9b)

where k=0, x, € R, x, given, and all f € .# satisfies: £:X,, X N —R" and f0, k=0
for all k=0. The origin is a quadratically stable equilibrium for system (9) if
dM, P, e>0, N(e)CX,, V(a, ) e N(e) X N

fla, i)'Pf(a, i) —a'Pa< —a'Ma 10)
If, in addition, there exists o> 0 such that for a given set R,
RiC (x|X"Px=a}CN(e), an

then the origin is said to be a quadratically stable equilibrium for system (9) with a
region of attraction associated with R, of at least {x|x"Px<u). A

The reason for introducing the condition (11) is that we have otherwise—based
on solutions to the BMI given in the first part of the theorem below—experienced
getting unnecessarily small (volume) Liapunov level sets, ie. sets of the type
{x|x"Px =&, &> 0}, as the largest such sets contained in the state-constraints X,,. (Any
such Liapunov level set is an estimate of the region of attraction of the origin.)

The given set R4 would typically be the smallest acceptable region of attraction.

Note that quadratic stability implies robust exponential stability.

Next, the main result of this paper is presented.
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THEOREM 1

If, restricting the Ws to be symmetric and to have nonnegative elements, A3M > 0,
P=P,S=8 (K}, {kl}'}ufﬂp Is {‘V!’f}'?r'rE L {ue R}?:ENE+I Viely, je

S A+BK ]}
*x P-mM-EWE]"" (122

Vie {Ne+1,.. N} jel

S A;"’B)‘K} B,&;-I-Cj
* P—-M+EIWE, —E[Wge|=0, (12b)
* * —eiWe

Vie (Ne+1,.. N} jeA
[s A+ BK B,k,+c,]
>0,

* P-M+1E  1e (12¢)
¢ * ‘l':€ I
and
SP+PS=<2I, (13)
then the origin is a quadratically stable equilibrium for the closed-loop.
If, in addition, there exist reals o and [ such that
= 14a
7 2= (14a)
and reals {4;}i € Iy, such that Vi € In,,
AMix—P — Ll X o ] -
T =0, 14b
[ AT Hy ki — D (140)

then the origin is a quadratically stable equilibrium for the closed-loop with a region
of attraction associated with {x|||x||3, =1} of at least {x|x"Px=<a}. 7

The LMIs (12) are conditions for the decrease, in the different clusters, of the
Liapunov function x— x"Px along all possible closed-loop trajectories which can be
generated by plants in .# under the state-feedback (3) (cf. (10)). The LMlIs (14) are
conditions for the Liapunov level set {x|x"Px < «} to contain {x|||x|%, = 1} (14a) while
simultaneously being contained in X,, (14b) (cf. (11)). The BMI (13) originates from
the inequality P! =S, which emanates from using Schur complements (Boyd er al.
1994) to get the LMIs (12).

The details are in the proof below which proceeds by using the so-called
& -procedure (Boyd er al. 1994) and Schur complements, and some other results on
matrix inequalities (cf. Section A).

Proof:

The origin is, by Definition 2, a quadratically stable equilibrium for the closed-loop
if HM, P=>0, {kj}?r‘ Is {k;}?‘ Ne 4

Viely, (a,) e X{, XN, w e Q,

T
{ 2 wj(A;+ B,-K;)a] PXx —a'Pa= —a'Ma (15a)
J

e
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and Vie {N2+1,.. N}, (@) eX{ XN, weQ,

[ S wlA;+BK: B+ c] [’i’]}rpt

L a|'[P 0][a al'fM 0][a
Ll ollil=-LI1G ol o

1110 0lt1 1110 odl1
Recall that the ¢;s are assumed to be zero for the local models valid in clusters 1 to N¢

(cf. Section 2). We have also dropped the arguments of the @;(-,-,-)s for the sake of
convenience.

Next, using the .%-procedure, we get that (15), restricting in the sequel the Ws (to
be introduced) to the symmetric and to have nonnegative elements, is implied by

aM, P>0, {Kf}?'-" 1s {kt}?ré NO+ Ly {W'.'}'}VE 1s {TFEO}FEN':+1
VIe Iy, (a,i) e R"XN, w € Q

T
[ 2 wi(A;+ B,K;)a} Px —a'Pa+adMa+dEIWEa=0, (16a)
je

and Vie {N¢+1,... . N}a,DeR" XN,weQ

[ S wlA;+BK, B+ cj][‘l’] }T Pk
JEfN
3116 oI+ oIl
[ elg]e
andVie{W?+1,.. N}, (@adeR' XN, weQ

Law;[A,- +BK Bji+c) [‘;]}T Px
a i HEHI

L1 elid=o oo

Using Fact 2 (See Section A), (16) is equivalent to
M, P>0, (K}, {kiiene s, (WY, {u=0)enr
Vielw (@i eR'XN,meQ,

T
{ S w4+ BJ-K;)} Pk —{P—M—EIWE}=0, (17a)
il

ey
and Vie (N°+1,.. N2}, (@, ) e R"X N, w e Q,

T
[ > wjlAj+BK, B+ cj]} Px

8 L R

'Remember that the ws have a and i as arguments.
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and Vie [NV +1,.. ., N (@, D e R"XN, weQ,

{2 wjlA;+ BK, Bk + q,-]}]r Px

jeh
P O M 0 EJ e;:l}
— - + =0.
{[0 0 [0 0] U g )f=0 070

By Fact 1 (See Section A), this is equivalent to

aM, P >0, (K, (kiieness {Wf}?—"—? b {T=0 epr s
Vie IN:'J'E A;

{A;+ BK} Pk — (P —M — EIWE}=0, (18a)
and Vie {N¢+1,.. N2}, je A

(P 0] [M O] E
[Aj"‘BjK; B_;kj"‘Cj]TP*_[ 0 0 - 0 0 —[egi.]W;[Ej 8{]}50, (]8[‘))

andVIE{N'g"'l,...,Nc}sjEAj

P 0] [M 0] E ¢
i+ B; +c]" —[ - [ ]]<_ .
[A;+BK, Bk+c] Pk o ol o ol*™ o C 0 (18¢c)

Using Schur complements, introducing a new matrix variable S, and noting that ;=0
necessarily since P>0 and €,> 0, this is equivalent to

M, P=P", =5, {Ki¥<1, {ki¥ionos 1, W%, {tdfenra
Vie IijE A)

S A+BK ]:_ .
> 1
x p-m+EWE]T" (192)

Vie {Ne+1,.. Nt} jel

S A+BK Bki+¢
*x P-M+EIWE —E[We|=0, (19b)
* * —e]We;

Vie{No+1,.. N} jel

S A+BK Bkt
* P—M+1E i€ =0,
* * T € I

(19¢)

and
S=p . (20)

By Lemma 1 (See Section A), the first part of the theorem follows.
Next, we note that {x|x"Rax =1, Ry >0} is contained in {x|x"Px=a} if and only
if x'Px <o when x"R,x < 1, by the %-procedure this is equivalent to 3 =0 such that

x'Px—o— PB(x'Ryx—1)=<0,
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which, using Fact 2, is equivalent to 3f such that

[P — PR 0 ] <0,
0 f—a
note that f, o >0 necessarily since P, Ry > 0.

The last part of the theorem follows from the assumption described by (7) and
Lemma 2 (See Section A). |

Remark 1

Note that if outer approximations (5) and (6) had been used for the clusters 1, . . ., N?
as well, then the accompanying variables W;s or 7;s would have been forced to zero and
it would have been more conservative than using (4) even though the outer
approximations could have been made tighter, i.e. of smaller volume. Furthermore,
choosing between approximations (5) and (6) is not only dependent on the geometric
shape of the clusters, one should also take into consideration the number of variables
introduced for each cluster. For approximation (5) the number of scalar variables
introduced grows quadratically with the row dimension of E;, while for approximation
(6) only one scalar variable is introduced. For polyhedral clusters, we have found it more
numerically efficient in some cases to use the tightest approximation of type (6) than
to use (5) directly. The tightest approximation of type (6) for a polyhedral cluster can
be found by convex optimization (Nesterov and Nemirovskii 1994, page 269). It should
also be noted that if E; associated with approximation (5) has only one row, then using
this approximation and the associated scalar W; will be more conservative than rewriting
the approximation in the form (6) and using the associated scalar 7,. In fact, adopting
the first approach would be equivalent to using the whole of R" as an outer
approximation. A

Remark 2

The “usual” approach (Boyd er al. 1994) consisting of making a so-called
linearizing change of variables by introducing Q: = P! and ¥: = KQ as variables has
also been pursued, necessarily in a slightly different manner though, and has been found
to lead to a more conservative BMI and not an LML, It seems very hard to get an
equivalent LMI condition. It should be noted that there exists an LMI which feasibility
implies feasibility of the BMI in Theorem 1. However, this LMI will generally be very
conservative. The existence of such an LMI can be seen by forcing S = P and replacing
the BMI (13) by the LMI

[2(I+P) P+ 1]20'
* I

which stems from P~ ' = P. To illustrate why this may be very conservative, consider
P € R**2, then, for P~' = P and P > Oto be satisfied, the elements of P must lie between
the two surfaces in Figure 3, whereas P>0 for any point above the lowest
surface. A

3.4. Summary of BMI Formulation

Theorem 1 presents a BMI—consisting of a series of LMIs and a single nonconvex
BMI—which if feasible, provides a Liapunov function, defined by P, together with a
piecewise affine quadratically stabilizing state-feedback {K;}1< 1, {ki} yo+ 1. Next, we
consider how to check the feasibility of the BMI.
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Figure 3. Satisfaction of P~'=/F and P> 0 vs. P>0 only.

4. Solution of the BMI Feasibility Problem

The literature covers both local and global approaches to BMI feasibility problems.
Local basically means that if one finds a feasible solution, it is fine, if not, one cannot
tell if there is a feasible solution or not. By global it is basically meant that if there is
a feasible solution it is found. However, doing so may bc cxtremely time-consuming.
We have used a global approach as described below. Some local approaches are
mentioned in Section 8.

With the BMI feasibility problem associated with Theorem 1 we associate the
following eigenvalue optimization denoted Z:y:

min ¥
subject to
M> -9
AP, S, M, {K}er, i¥ienesr,on .. )= — 0
B(P,8)= — UL

The minimization is over all matrix and scalar variables in the matrix inequalities. The
affine symmetric matrix valued mapping /(- . . ., -) is given by (12), (14), and the
nonnegatively condition on the elements of the W;s. The biaffine symmetric matrix
valued mapping #(-,-) is given by (13).

It is clear that if ¥" <0, where 9" is the value of 9 at the optimum, then the BMI
and LMIs in Theorem 1 are satisfiable. Zgy is a biconvex non-smooth optimization
problem (Goh, Safonov and Papavassilopoulos 1994).

We use branch-and-bound algorithm 3 in (Tuan, Hosoe and Tuy 1997) for solving
Prv (of course there is a halt when a feasible 9 <0 is found). A similar approach to
BMI problems can be found in (Beran, Vandenberghe and Boyd 1997). In algorithm
3 the branching is done on a set of lower dimension, in the present case much lower,
than the total problem dimension, as opposed to (Goh e al. 1994) and (Kawanishi, Sugie
and Kanki 1997) where the branching is done on a set with dimension equal to the total
problem size. The number of the so-called complicating variables gives the dimension
of this lower dimensional set. The number of complicating variables is the smallest
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number of variables that need to be fixed to make the BMI an LMI. In our case the BMI
structure arises due to the single BMI (13). Since P = P" € R"*", this gives (n* + n)/2
complicating variables (the number of independent elements in P) which is much lower
than the total problem size which might be ten times the number of complicating
variables.

The lower bounding in algorithm 3 is done by a tight relaxation of the BMI (13)
to an LMI and then the resultant LMI problem is solved, while the upper bounding is
done by solving an eigenvalue problem which is parameterized by the solution of the
lower bounding problem. The branching is done so as to force the difference between
the relaxed BMT and the original BMI “quickly” towards zero. The details as well as
a global convergence result are given in (Tuan et al. 1997). We have used the excellent
LMI lab in (Gahinet, Nemirovski, Laub and Chilali 1995) as a basis for implementing
this algorithm.

Another work which has come to our attention recently (subsequent to the
acceptance of this paper) is (Yamada and Hara 1997), which describes a tailor-made
algorithm for global minimization of the spectral radius of the product of two symmetric
positive definite matrices under convex constraints (LMIs). Taking the two matrices to
be P and S, this is exactly the problem we have (cf. (20) in the proof of Theorem 1 and
the proof of Lemma 1). To apply their algorithm, however, it is necessary that the LMIs
involved satisfy a certain monotonicity condition with respect to P and S. In our case
the LMI (14a) does not satisfy this monotonicity condition. (For the monotonicity
condition to hold it must be the case if a given P satisfies (14a) all P’ = P also do. This
is not the case.) On the other hand, it might be that ideas from that work can provide
a basis for constructing a more efficient global algorithm.

5. Example

The example system, which is taken from (Tanaka, Ikeda and Wang 1996), is
depicted in Figure 4. It is a mechanical system consisting of a mass, a spring, and a
damper.

The nonlinear equations of motion have the following structure.

X) = X2

1
Xy = }I_wf( — &1x1, X2) — go(x1) + w),

92(z1)

I
g1 (-’1?1 ) 502)

-
Ty

AAMMMIMIMIMIMRY
S

Figure 4. The example system.
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where
gi(x1, %) = D(c1 X + c2x3) (Damper)
g2(x1) = caxy + caxi. (Spring)

x; denotes the position of the mass while x; denotes its velocity.
System knowledge permits us to limit the parameters to

M=1 (21a)
09<=D<12 (21b)
0<c, =002 (210)
0-1<c,<02 (21d)
001 <¢; =002 (21e)
07<¢=1. (21f)

To facilitate the uncertainty modeling of this system we rewrite x> as

%= filx) ) +
where

ﬁ(XI) - - ;:;((DC] + c;)x. "|‘ C4x'?)

Dc¢
)= — 2 x.

M
Next, we develop the model class .4, which provides an outer approximation to the
set of possible systems defined by the uncertainty (21).

This is done by first finding the upper and lower bounds for each of fi(-) and fi(-)
on [ — 1-5, 1-5]. Piecewise affine functions are then chosen, which tightly approximate
the lower bounds from below, and the upper bounds from above. The upper and lower
bounds for fi(-) and f(-) as well as their tight outer approximations are shown in Figure
5 to the upper left and upper right, respectively. The bends of the piecewise upper and
lower outer bounds for both functions are at *+ 0-8667. Both the upper and lower outer
approximations for each function consist of four pieces. This gives rise to
4X 4X2=32 “local” planes covering every possible f(xi, x2): = f(xi) + f(x2) on
[—1:5,15] X[ — 15, 1-5] = X,, as shown at the bottom of Figure 5.

For cach of the 32 “local” planes, it is straightforward to find an associated
discrete-time local model (A, B;, ¢;). We have used forward Euler for the time-
discretization. The coefficients A;(2, 1), A;(2, 2) and ¢;(2) in the local models depend
on the sampling period A = 0-2, the derivatives of the lower bounds for negative x; and
negative x, evaluated at x, = x, = — 1-3 (chosen as tangent points), and the derivatives
of the upper bounds for positive x; and positive x; evaluated at x; = x; = 1-3. The other
coefficients are given as follows: Aj(1, 1) =1, A(1,2) = A, B;= [0 4]", ¢;(1) =0, and
) =.. .—'6'3:[00]1.

The supports X; are given by the 8 X 2 rectangles and 8 X 2 squares shown in Figure
6. .# is now defined by the supports and the accompanying local models.

There are 4 X 4= 16 clusters associated with the 32 supports. Two local models
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I

Figure 5. Graphs illustrating the development of the nonlinear multimodel-based uncertainty
class for the example.

(an upper and a lower bound) have support in each cluster, X¢. See Figure 6, and
Figure 5.

Now, let the smallest acceptable region of attraction be {x|x"x =1}, i.e. the closed
unit ball.

By (outer) approximating the clusters that are not bordering the origin tightly with
ellipses (cf. (6)) and the clusters that are bordering the origin with polytopes (cf. (4)),
we find a stabilizing controller giving closed loop trajectories as shown in Figure 7, with
associated control input sequences as shown in Figure 8. From Figure 9, we observe
that thc computed Liapunov function is indeed decreasing along trajectories of the
closed-loop system.

Solving the BMI feasibility problem in this case involves the solution of five LMI
problems, or three iterations in the branch-and-bound algorithm. The found region of
attraction associated with {x|x’x =<1} is {x|x"Px=<a} where a = 10-9795 and

P_[7-1007 1-2133]
12133 7.09151°

In the simulations, D and ¢, have sinusoidal variations between their upper and
lower bounds while the other parameters are fixed as follows: M =1, ¢, =0-02,
¢c; =0:15, and ¢; = 0-015.
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1.5
17,18 15,16 13,14 11,12
[ 19,20 3,4 1,2 9,10

g
21,22 5,6 7,8 31,32
23,24 25,26 27,28 29,30

Ly ' ' ' 15

Ty

Figure 6. State-space supports X;* for the 32 local models. The numbers denote which Jocal
models have support in the 16 different clusters.

1.5+
é“ L
H
—15F b
Ha.
15 ' ' ' ' 1.5

T

Figure 7. Phase-plane plot of closed-loop trajectories for six different initial states. Note the
convergence towards the origin. Also, the level curves describing x'Px = o, X'R,x = 1
Ra=1), (x— O)H, ,(x —0) =1, and (x — 0)'Hy, .(x — 0) = 1 are given. Lastly, note that
the containment relations of the associated sets are in accordance with what is specified.




Constrained Quadratic Stabilization of Nonlinear Systems 153
3 T T T T T T ¥ L] T
s 0}
_3 1 1 1 1 i 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Sample #
Figure 8. Control input sequences associated with the six closed-loop trajectories in
Figure 7.

12 T T T T T T T T T

10

0 5 10 15 20 25 30 35 40 45 50
Sample #
Figure 9. Liapunov function versus time for the six different initial states, cf. Figure 7.
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6. Control input constraints

To satisfy the control constraints, U,,, on all possible closed-loop trajectories
starting with {x||x||z, = 1}, it is sufficient to satisfy them on the positively invariant
embracing set {x|x"Px=<a}CX,. For this to be the case it is sufficient that for all
(i! l) S INqu X INc

IKx+k—u, JPH.w<1,x e Xf N{x|x"Px=a}. (22)

Note that this condition is not necessary, since the control inputs are made to be inside
an inner approximation to U,

When outer approximating the clusters Xf in connection with formulating BMI or
LMI conditions for satisfying control constraints, one can use any of approximations
(4), (5), or (6). One is not restricted to use (4) when ! € Iy, Thus for [ € Ine we assume,
when it comes to formulating BMIs or LMIs for control input constraints, that

{x|Eix=0}DXf (23)
whenle {l,...,N2,},
&|IE &) [ﬂ <0}DXf 24)
when le {N2,+1,...,N%?}, and, finally
x1TE, é}][x]{
{xl[l] er el =0}>2Xf 25)

when le {N2,+1,...,N%}. N2, and N? , are used to express how many of the N?
clusters are approximated by each of the three different outer approximations.
To be able to state the results more compactly we define

~ ki=0forallle {NJ,+1,.. N}
- (Eb éf): = (Efv 8;) forle {N:’—' + 19 ey N{’}'
(Ef, €, é;): = (Ef, €, G;) forile {N’: +1,.. -,Nc}-

Now, (22)—using the & -procedure—implied by that V(i) € Iy, Xy,
Atf;=0,7f,>= 0and W, ; = W] ; with nonnegative elements and appropriate dimensions
such that Vx e R”

T
[xTI][ _K‘:T ]Hi, K — s, c][;r] =1+ :"Px— o) —XEIW, ;E;x  (26a)
whenle {1,...,N2,},
Kl x] _
0 P T o

|+ 2 7P — ) — [xfn[f]w,_.{é, alf| o
i
whenle N+ 1,... ,NPYU{NS, +1,..., N}, and
. K7 _ B E:
[x 1][(k;— H;‘,-)T]H" M[K." kl' ur.c]l:l:l = _ )
14+ 27 (TPx — ) + tf;[fl][(f; E’ ][‘”] (26c)
i I

whenle {No+1,.. ,NIU{N+1,..., N2}




Constrained Quadratic Stabilization of Nonlinear Systems 155

Applying Fact 2, followed by Schur complements it can be seen that (26) is
equivalent to that V(i, ) € In,, X Iy.371,; =0, ©f ;=0 and W, ; = W[, with nonnegative
elements and appropriate dimensions such that

TP — ETW.'. E 0 K;r
=0

* 11—t —ul (27a)
* * H,',_u'
when l e {1,...,N2,},
P — EIW, .E — Eiw, & KT
* 1—t E;GE - ETWf‘iéf (k} - U;, C)T =0 (27'))
* * Hiu
Whel'l !E {Ng"‘ l:- - 'vN{?}U {Nf. 1 + ls .. ")N?,Z}! a'nd
TP+ tfiE 1€ KT
» 1—tla+tf,€ (k—u ) |=0 (27¢)
* * Hi

whenle {N?+1,.. ,NYU{NZ,+1,..,N2}.

The matrix inequalities (27) are BMIs guaranteeing (22). It is also possible to get
LMIs, more conservative though, which guarantee (22). This can be done by dropping
the intersection with the Liapunov level set {x|x"Px<a} in (22), which amounts to
setting the f ;s to zero, implying that all the W, ;s must be zero (cf. (27a) and (27b)).
From (26a) and (26b) it then follows that the associated Ks are forced to zero, which
of course is overly conservative. Thus, the only sensible outer approximations to
use—when applying this procedure to get LMISs for the control input constraints—are
the ellipsoidal ones in (25). There remain the following LMIs guaranteeing (22):
V(i, I) € !Nqn X IN(Eltf,- =0

1 Er 11 i€ Kl
*  1+5€ (h—w)' |=0. (28)
* * Hiu

From the above we have

THEOREM 2

If the hypotheses (12), (13), and (14) of Theorem I as well as either the BMIs (27)
or the LMIs (28) are satisfied, then the origin is a quadratically stable equilibrium for
the closed loop with a region of attraction associated with {x||x||%, =< 1} of at least
{x|x"Px < a} and the control input constraints, U,, are satisfied on all closed-loop
trajectories starting within {x|x"Px<a}. A

We note that the BMIs (27) introduce only one more complicating variable,
namely o.

7. Robust Model Predictive Control

Model predictive control (MPC) has been an active research area for close to two
decades. The research has been driven by numerous successful applications of the
technology (Qin and Badgwell 1996) and, during the last years, a sound theoretical
foundation has been established; (Rawlings, Meadows and Muske 1994), (Lee 1996),
and (Mayne 1996).
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The issue of robust stability of MPC-based control systems is, however, largely
unsolved, at least for nonlinear MPC. Some results are available: work on robust MPC
for linear systems includes (Zafiriou 1990) on constrained stable systems; (Kee, Kiwon
and Lee 1996) on unconstrained systems; (Kothare, Balakrishnan and Morari 1996) and
(Zheng 1997) on constrained systems. Work on robust analysis of nonlinear MPC
includes (Michalska and Mayne 1993) and (Yang and Polak 1993) on constrained
continuous-time systems, and (Sutton and Bitmead 1997) on unconstrained discrete-
time systems. Finally, work on robust synthesis, i.e. an uncertainty model is explicitly
used when synthesizing the controller, of nonlinear MPC includes (Badgwell 1997) on
stable constrained discrete-time systems, (Chen er al. 1997) on input-affine constrained
continuous-time systems, (van den Boom 1997) (based on (Kothare et al. 1996)) on
input-affine feedback linearizable constrained discrete-time systems.

In this section, we consider robust synthesis of MPC controllers for nonlinear
constrained discrete-time systems. The approach applies to stable as well as unstable
plants, it is not restricted to input-affine plants, and the on-line computational load is
low as opposed to (Chen et al. 1997). The off-line load, however, may be very
high and depends on the number of complicating variables in the BMIs (cf. the first
paragraph of Section 8 below). The approach does not have a min-max nature as (Chen
et al. 1997) and (van den Boom 1997). This may give better performance when the
nominal model used in the predictor is close to the real plant thus its nature is close to
the approach in (Badgwell 1997) where nominal performance is optimized subject to
robust stability.

7.1. Preliminaries

MPC is a model-based method in which the control inputs on some future time
horizon uy, . . ., 4+ - are computed at time-step k by (locally or globally) solving a
constrained optimization problem (see Section 7.2). The control input obtained for the
first time-step, uy, is implemented onto the controlled system. Atk + 1, the optimization
problem is solved again, utilizing the latest available measurements. Again, only the
control input for the first time-step is implemented. In sum this means that an
optimization problem is solved at each future time-instant. Further, MPC can be viewed
as a receding-horizon type feedback controller.

Now, roughly speaking, our approach is based on ensuring that the optimization
problem constraint |[xc+ 1||3 > ||x:|#, where P >0, is satisfied for any possible plant
within the model uncertainty class .4 at each time-step k. If this is the case, then the
origin is quadratically stable since x+>x"Px constitutes a Liapunov function for
the origin of the closed loop. This constraint is added to the other constraints on the
predicted control inputs and states in the optimization problem, defining the MPC, to
be solved at each time-step k. The problem is now, of course, how to find a suitable
P, and also, how to find an initial feasible predicted control sequence at every time-step
k= 0. This is where the results from the previous sections come into play. The details
are presented next.

7.2. Quadratically Stabilizing Constrained Nonlinear MPC

The results from the preceding sections are naturally utilized by introducing the
precomputed Liapunov matrix, P, associated with Theorem 2 into the MPC
optimization problem as outlined above and shown below. Further, the accompanying
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precomputed feedback matrices (cf. (3)) will be used to compute an initial point for the
optimization problem to be solved at each time-step.
Firstly, an optimality criterion is defined on the prediction horizon N.

(s xis ky X, Us— 1)

T = {Upy -« -y Ursy—1 ¥, K= {Xhs 1y -« Xnanh
¢:RMX"'XR"!XRNXO-.XR"XNXR"XR‘”_’R§-

Secondly, the following optimization problem, to be found feasible or solved at each
time step k, denoted Py is specified.

min G, 25 k, Xi, ty-1)
subject to the hard constraints
bk all? = el = = llxallfe V7 € Gl € X5,
and the soft constraints
e X XXX,

P (as mentioned above) and M are given by Theorem 2. I1: = U, X -- . X U, x},,
denotes the one-step ahead prediction using affine local model j, i.e.
Xk+ 12 =Ajxe + B + ¢;. 71" denotes the prediction on the N-step-ahead horizon using
some model which typically, when restricted to X,, X U,, X N, is within the model
uncertainty class .#. This model is called the nominal model. The so-called soft
constraints are defined by X. It should be noted that it is sensible that X C X,,, so as to
“softly” force the predicted states to be within the state constraints. If the nominal model
is within .# on X,, X U,, X N and X D {x|x"Px < a}, then the soft constraints can be
satisfied, if wanted, for every k= 0 provided x, € {x|x"Px < a}. If the choice of X or
the choice of nominal model makes some of the soft constraints infeasible at some k,
they can be dropped at that k while retaining the closed-loop plant state within X,,. This
follows from the hard constraints.
The solution procedure for the MPC is defined as follows.

Step 1 At time-step k, the initial choice for 7y in the iterative optimization algorithm
is computed by the precomputed state-feedback (3), {K,}< |, {k,}}c o+ 1, derived from
Theorem 2, using the nominal model for prediction.

Step2 The iterative optimization algorithm for solving Pypc is run until convergence
or, alternatively, terminated earlier.

We may now formulate the following theorem, based on Theorem 2.

THEOREM 3 (NONLINEAR RoBUST MPC)

Assume that the system to be controlled is given by some element in 4. Then an
MPC based on the solution procedure above renders the origin of the closed-loop
quadratically stable with a region of attraction associated with {x|x"Rxx =< 1} of at least
{x|xPx=a}CX,, and the control input constraints, U,, are satisfied on all
closed-loop trajectories starting with {x|x"Px=a}. A




158 Olav Slupphaug and Bjarne A. Foss

Proof:
If we can show that for all (x;, k) in {x|x"Px=a} XN,

e 17 = Iz = = flcellZe (29)

where f{(-,”) denotes the closed-loop under the MPC, the result follows from Definition
2 and that P, M, o and R, are associated with the satisfaction of the hypotheses of
Theorem 2. Now, take arbitrary (x, k) in {x|x"Px <o} X N. If the hard constraints are
satisfied, it follows from the definition of x4, ; and going backwards from (18) in the
proof of Theorem 1, that (29) is satisfied. Step 1 of the solution procedure will always
provide a 7 satisfying the hard constraints when (x;, k) in {x|x"Px =< o} X N, this follows
going backwards in the proof of Theorem 1 from the end to (18). Thus, the result
follows. O

As mentioned above, the soft constraints in Zypc may or may not be satisfied. It
is important to observe that the result does not depend on this.

The solution procedure utilizes an iterative optimization algorithm. Since the initial
choice satisfies the hard constraints, consecutive iterations will also satisfy these
constraints. The importance of the iterative search is to improve nominal performance
within the frame of a robust stability guarantee. By this, the iterative algorithm may be
terminated at an arbitrary iteration without affecting (quadratic) stability. This may, for
example, be caused by limited computation time.

The optimization problem may be non-convex if the nominal prediction model is
nonlinear, or if ¢(:, -; k, X, - 1) is non-convex. The latter is rarely encountered since
&(-, -5 k, xi, uy-1) typically is chosen as a norm-based function, and all such functions
are convex. Again, this does not affect the stability result. In fact ¢(., -; -, -, -) can be
any scalar function.

The proposed MPC algorithm may be interpreted as follows: (i) Robust stability is
guaranteed by considering the 1-step ahead prediction of the whole model uncertainty
class. This is possible since the set of possible 1-step ahead predictions is defined by
a polytope, where the vertices are given by the affine systems that are active at the
present state x;. It should be noted that this is, of course, less conservative than letting
all the models have support X,.; (ii) Performance is taken care of by considering a
nominal model on the entire prediction horizon. In practice, the nominal model will be
chosen as the most likely model. It may either be a linear or a nonlinear model.

8. Discussion

The major drawback with the proposed model is that a BMI feasibility problem,
which number of complicating variables grows quadratically with the number of states,
has to be solved. Thus, presently only problems with a low number of states (3-4) can
be attempted solved using a global approach. A natural next step, which is probably
very hard, would be to establish the necessity of a BMI formulation, and, if it turns out
to be unnecessary, find an equivalent LMI. Anyway, it should be possible to formulate
an equivalent BMI which less dramatically suffer from this growth in complexity. A
sensible parallel track to follow, could possibly be to check the performance of different
local approaches on problems with a high number of states. Work on local approaches
include (Goh, Truan, Safonov, Papavassilopoulos and Ly 1994), (El Ghaoui and
Balakrishnan 1994), (Collins, Sadhukkan and Watson 1997), and (El Ghaoui, Oustry
and AitRami 1997). El Ghaoui er al. (1997) have considered a local solution to a specific
BMI problem which is close in nature to ours. The BMI in their case is SP = 1, while
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in our case it is P=<S5"'. Their work might provide a good background for getting an
efficient local approach to our problem. At least the results of their numerical
experiments are very promising.

We note that important problems such as output feedback and disturbance rejection
cannot, at the moment, be addressed by the given design procedure. However, the work
(Dussy and El Ghaoui 1997) provides hope for such extensions. Therein, LMIs
associated with a bilinear nonconvex equality constraint are found for robust
exponentially stabilizing output-feedback control satisfying an .%,-gain condition from
the disturbances to the controlled outputs. The considered systems are, however, input
affine and have rational nonlinearities.

A natural extension of the described design procedure is to search for a piecewise
quadratic Liapunov function as well as a piecewise affine state-feedback. In (Johansson
and Rantzer 1997) and (Petterson and Lennartson 1997) computational methods for a
related analysis problem in continuous-time are given. It should be possible to utilize
the results in these references if the discrete-time system is a result of a
time-discretization of a continuous-time system, as it almost always will be in
applications, with a sufficiently small time-discretization step. The problem, of course,
is to decide what is “sufficiently small”. The reason for this being necessary to make
their results applicable, is that their results are (implicitly) dependent on the fact that
the solution of a continuous-time dynamic system proceeds in infinitesimal steps as
continuous-time elapses—however, this is not generally the case for a discrete-time
system as discrete-time elapses.

Another very interesting topic to investigate is the use of parameter dependent
Liapunov functions since these can capture information on the time-variations of the
uncertainties. The single quadratic Liapunov function used in this work allows for
arbitrary time-variations. An excellent account for these matters can be found in
(Apkarian, Becker, Gahinet and Kajiwara 1996, Chapter 5).

Although it is not focused on here, some hybrid control problems (Alur, Henzinger
and Sontag 1996) can also be addressed by the proposed approach. Work on
unconstrained nominal control is reported in (Rantzer and Johansson 1997).

Lastly, it should be noted that for mechanical systems, there are a lot of examples
when the equilibrium input is independent of the uncertainty, such examples seem to
be rare in chemical processes. Thus, removing the assumption that the equilibrium
control input is known would greatly increase—within the area of chemical process
control—the problem class to which the presented approach can be applied. This means
investigating integral control with constrained control inputs and states, and it should
maybe be combined with looking into parameter dependent Liapunov functions for
uncertain systems with constant (in time) uncertainties. Also, stability of invariant sets
that are larger than an equilibrium point would be natural to investigate if the problem
at hand, in fact, involves time-varying uncertainties and the system does not admit an
equilibrium solution.

9. Conclusions

A robust constrained nonlinear stabilization problem is solved. The solution is
obtained by solving a BMI feasibility problem. The BMI-—a series of LMIs combined
with a single BMI—basically arises from applying Liapunov’s theorem with a quadratic
Liapunov function to a multimodel-based uncertainty class under piecewise affine
state-feedback.
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A nonlinear constrained robust MPC is also synthesized based on the computed
solution to the BMI feasibility problem. This robust MPC is on-line computationally
feasible.

The main problem with these approaches is the nonconvexity of the associated BMI
feasibility problem. Second, considering only quadratic Liapunov functions may be
conservative. Furthermore, is neither output-feedback nor disturbance rejection
considered. These drawbacks, and others as well, are discussed more thoroughly in
Section 8 together with suggestions for futurc work.

In conclusion, much research remains to be done before these approaches may serve
as general tools for handling robust constrained nonlinear control problems. They do,
however, seem to provide an interesting basis on which to continue.

Finally, we would like to add that the matters considered in this paper are more
thoroughly discussed in (Slupphaug 1998), which first part is based on the work
presented here. Also, it must be mentioned that Hassibi and Boyd (1998) have
subsequent to the acceptance of this paper found an LMI for quadratic stabilization of
piecewise affine systems based on a piecewise linear state-feedback, in addition they
propose a less conservative way to (outer) approximate the clusters not containing the
origin in their closure. They use unions of ellipsoids rather than single ellipsoids. This
extension is included in (Slupphaug 1998).
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A Some Results involving Matrix Inequalities
Fact 1

Given R"™*" 3 P=0,A; € R"*" and Q = Q" € R ™™, then the following statements
are equivalent

(i) AIPA,—Q=0,Viel,
(ii) ATPA—Q <0, VA € Co{A,, .. .. A},

where

q 9

CofAy,.. . A ={A|A=D wiA, w;=0Wiel, > wi=1}

i=1 i=1

Fact 2
T
[ﬂ Q[‘:]EO,VxeR"QQZO,

where Q= Q" e R**' 7"+,

LeEmMMA |
Given P, S >0 then the following holds

SP+PS<2I

p=s!
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Proof:

We prove this by proving the equivalent implication (Horn and Johnson 1992,
Problem 6 p. 400, Theorem 7.7.3):

X'SPx<x"x Vx= p(SP)< 1.
Now, since §, P >0, o(SP) C (0, ) (Horn and Johnson 1992, Theorem 7.6.3). Thus,

x'SPx

0<i(SP)= IPE{))( Tx

=1,Vi=1...n,

follows from the hypothesis x'SPx=<x"x (for the second inequality take x =an
eigenvector corresponding to Z(SP)). In other words p(SP) < 1. O

There is no “only if” part to this theorem as demonstrated by the following
counter-example provided by Professor Herman Rubin at Purdue University. Take

[4—9 —-19 1 2
-19 9 25

then P=5"" while SP + PS $ 2I.
Next, an LMI condition necessary and sufficient for that the ellipsoid

| x"Px<a, a, P> 0}
is contained in the intersection of the ellipsoids
x| — X ) Hiax = X, ) =<1, Hy >0}, i €Iy,

is found. An equivalent result in a form that is not directly applicable in our context
is given in (Boyd et al. 1994, page 45).

P= ]>0 and S=[ ]>0,

LEMMA 2

{x|x’Px<a, o, P>0} is contained in the intersection of the ellipsoids
& —x JH (x—x. )<1,H.,>0} ie In,,, each of which having the origin as
an element, if and only if the following LMI in the variables {J; € R};. In,, IS feasible:
Viely,

[;W'Hi.x —P - /L‘fof, c ] <0

- )w'xIcHi Ai(x{t‘Hﬁ_ WXi e — l) +o
A

Proof:

{x|x'"Px=<a,x, P>0} is contained in the intersection of the ellipsoids
Xl —x YH (x—x.)=<1, H.,>0}, i e Ing, if and only if for all i e Iy, and
x (x— x.)"H; (x — x;, ) = 1 whenever x"Px < . By the &-procedure this is the case if
and only if 31,=0, i e Iy, such that

O =X ) Hidx— %) — 2x'Px=<1— Lo, Vx. (30)
The left-hand side of (30) is bounded from above (over all x) if an only if
H,.—LP=0,

this implies that ;>0 necessarily, hence, (30) is equivalent to 34; >0 such that
Ax—xi, )'H; (x —x;. ) —x"Px=1—a, Vx.
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Using Fact 2 this is equivalent to 34; such that
[ AH; . — P — Al o Xi —I
_ L =0,
- )."XE ,-H,-‘ x )‘.,‘(XI (-H," Xie ™ 1 ) + o
note that 4; > 0 necessarily since o> 0, and x/ .H; ,x; . — 1 =0 due to the origin being

contained in the approximating ellipsoids. Il
Note that if o, P > 0 are unknown, one still gets an LMI (in the variables o, P, and

{j‘i}i € JN(;I)-




