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Adaptive feedback linearization
applied to steering of ships

THOR 1. FOSSENt and MARIT J. PAULSENY
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This paper describes the application of feedback linearization to automatic steering
of ships. The flexibility of the design procedure allows the autopilot to be optimized
for both course-keeping and course-changing manoeuvres. Direct adaptive versions
of both the course-keeping and turning controller are derived. The advantages of
the adaptive controllers are improved performance and reduced fuel consumption.
The application of nonlinear control theory also allows the designer in a systematic
manner to compensate for nonlinearities in the control design.

1. Introduction

The reason for applying more sophisticated autopilots for ship steering are mainly
due to fuel economy and performance improvement {(Van Amerongen (1984)). Since the
ship steering equations of motion are highly nonlinear and the model parameters
depend on the forward speed as well as the weather conditions, nonlinear and adaptive
control theory should be considered. A general approach based on adaptive feedback
linearization can be used for this purpose. In fact, adaptive feedback linearization can
be combined with optimal control theory to design an autopilot for course-keeping and
fuel reduction. Similarly, pole-placement techniques can be applied to course-changing
manoeuvres. This flexibility allows the designer to tune the autopilot for both course-
keeping and course-changing manoeuvres instead of designing two independent
autopilots to accomplish these tasks.

The paper is organized as follows: Section 2 discusses state-of-the-art linear and
nonlinear models for ship steering. In Section 3 the combined course-keeping and
turning controller is presented. Section 4 contains a simulation study while Section 5
summarizes the conclusions.

2. Ship steering equations of motion
Some of the most common mathematical models describing the steering dynamics
of ships are briefly reviewed in this section.

The models of Nomoto et al. (1957)

For small rudder angles, the transfer function between the rudder angle § and the
yawing rate r of a surface ship can be described by the linear models of Nomoto et al.
(1957). Nomoto’s 2nd order model is written as

rs)  K(1+Tss)

&) (1+Ts)1+Ts) ()
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where s is used to denote the Laplace operator, K is the gain constant and T;(i=1, 2, 3)
are three time constants. A first-order approximation is obtained by defining the
effective time constant as T=T, + T, — T5. Hence,

s) K
&s) 1+Ts

The yaw angle y(f) is related to the yaw rate r(f) as y/(t)=r(t).

@

The model of Bech and Wagner Smith (1969)

The linear ship steering equations of motion can be modified to describe large
rudder angles and course-unstable ships by simply adding a nonlinear manocuvring
characteristic to Nomoto’s 2nd order model. Bech and Wagner Smith (1969) propose
the model

T T ™ +(T; + T + KHy(h) =K (6 + T36) (3
where the function H 4(/) describes the nonlinear manoeuvring characteristic produced
by Bech’s reverse spiral manoeuvre, that is

Hy)=b3y* +by* +b,y + b, @

For a course-unstable ship we will have that b; <0 while a course-stable ship satisfies
b, > 0. A single screw propeller or asymmetry in the hull will cause a non-zero value of
b, Similarly, symmetry in the hull implies that b, =0. Since a constant rudder angle is
required to compensate for constant or slowly-varying wind and current disturbances,
the bias term b, could conveniently be treated as an additional rudder off-set. This in
turn implies that a large number of ships can be described by

Hy)=byy* +byi ©)

The model of Norrbin (1963)
Similarly, an extension of Nomoto’s 1st order model can be made by defining

TV + Hy()=Ké (6)
where the manoeuvring characteristic Hy(f) is defined as
Hy()=ns0* +n 0% +ny +n M

The Norrbin coefficients n,; (i=0... 3) are related to those of Bech’s model by n;=b,/|b,|
(i=0...3). Hence, n, = —1 for a course-unstable ship while n, =1 corresponds to a
course-stable ship.

Forward speed effects

The influence of the forward speed U on the model parameters can be removed by
using non-dimensional quantities. Let L be the length of the hull. Hence, the gain and
time constant can be made dimensionless with respect to speed variations by applying
the transformations

K=K*(U/Ly T=T*(L/U) )

where K* and T* are dimensionless constants, typically in the range of 0-5-2-5 for most
ships (Van Amerongen (1984)).
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3. Feedback linearization

The basic idea with feedback linearization is to transform the nonlinear systems
dynamics into a linear system (Freund (1973)). Conventional control techniques like
pole placement and linear quadratic optimal control theory can then be applied to the
linear system. In robotics, this technique is commonly referred to as computed torque
control. Adaptive computed torque control have been applied to robot manipulators
by Horowitz and Tomizuka (1986) and to underwater vehicles by Fossen (1991).
Consider Norrbin’s nonlinear ship steering equations of motion in the form

mj+dy+dy® =6 ©)

where m=T/K, d, =n,/K and d,=n,/K. For simplicity, the coefficients n, and n, are
assumed to be zero. Taking the control law to be

d=rha,+d ) +du? (10)

where the hat denotes the estimates of the parameters and a,, can be interpreted as the
commanded acceleration, yields

n‘(d;_aw)='ﬁav+d‘l'p +J3'ﬁ3 (ll)

Here ri=1i—m, d, =d, —d, and dy =d; —d, are the parameter errors. Consequently,
the error dynamics can be made globally asymptotically stable by proper choices of the
commanded acceleration a,. The unknown parameters m, d, and d, are made
dimensionless with respect to speed variations by applying the transformations

m=m*L/U)*; d,=d}(L/U); d3=d%(L/U)? (12)

where the asterisk denotes the non-dimensional quantities (with respect to speed U and
length of hull L). Hence, the error equation (11) can be expressed as

m*( — a,)=ri*a,+dH(U/LW + d4(L/U)? (13)

The control law (10) can be made adaptive by including a parameter estimator for
updating of i, d; and d,. We will discuss two methods utilizing pole-placement and
optimal control theory, respectively.

3.1 Pole-placement

Course-changing
In the case of no parametric uncertainties, equation (13) reduces to
y=a, (14)
which suggests that the commanded acceleration should be chosen as
a,=Vs—KJ—K ¥ (15)

where y, is the desired heading angle and §y =y —/, is the heading error. This in turn
yields the error dynamics

V+Kah+K =0 (16)

The desired states: ,, Y5 and {, can be generated by the reference model shown in
Fig. 1 where ¢, is the commanded input.
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Figure 1. Reference model for turning controller.

A simple pole-placement algorithm could be to choose:

K,=3% K,=2k >0 (17)
which yields the critically damped error dynamics:
U+ 200+ A =0 (18)
or equivalently,
§42s=0 with s={+Aj (19)

Here s can be interpreted as a measure of tracking. An adaptive version of the pole-
placement algorithm is given in Theorem 3.1,

Theorem 3.1. (Adaptive pole-placement)
The parameter update laws

m*=—y,a,s
d¥=—y(U/LWs
d%= —y(L/UWs (20)

with y;>0 for (i=1,2,3) yields a globally stable system.
Proof: Substituting equations (15) and (17) into the error dynamics (13), yields

m*($ + As)=rii*a,+ d¥(U/LW + d5(L/UW? (21)
Consider the Lyapunov function candidate
Vis, i, 2%, Jg)={m*s1+:—1(rﬁ*)z @ (3:)2] @)
Consequently, differentiation of V with respect to time together with (21), yields
V= —bn*sz+lﬁ*|:y—lln“‘i*+a,,s:|+tff[§lz d* +-E q&s]+3’3‘[}%3§+%¢3s] 23)

Assuming that m* = d* = d% =0, the particular choice (20) of the parameter update laws
implies that (23) reduces to
V=—Im*s?<0 (24)

This implies that ¥(£)< V(0), and therefore that s, 7ii*, & and d* remains bounded in all
time. Differentiating V' with respect to time, yields

V=—2Am*ss (25)
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Assuming that a, is bounded implies that §in (21) is bounded and consequently that Vis
bounded. Hence, V must be uniform continuous. Convergence of V to zero is
guaranteed by application of Barbalat’s lemma (see Appendix A). This in turn implies
that the s—0 as t—o0. In view of s=$ + A4, this implies that the tracking error
converges asymptotically to zero. Notice that, convergence of the parameter errors ni*,
d* and d* requires that the system is persistently exciting (PE).

Integral action

In the implementation of the control law it is desirable to include integral action to
ensure that the tracking error converges to zero in the presence of constant wind and
current disturbances. This can be done by simply modifying the measure of tracking
according to

1
s=47+2w+;12j J(t)dr (26)
4]
which suggests that the commanded acceleration should be chosen as
1
@, =Wa— 30— 322 — A-‘*I J(x)de @27
]

3.2. Linear quadratic optimal control course-keeping

During course-keeping it is desirable to minimize an energy cost function relating
the control energy to the fuel consumption of the ship. Since the term proportional to
y® is small during course-keeping, we will restrict our analysis to the Nomoto model

my +d =6 (28)

Let ¢, =constant denote the desired heading. Hence, an optimal course-keeping
controller can be derived for the 2nd order system

\l’. =da, (29)
by minimizing the quadratic cost function
1 T
J=§I (@ —¥)* + A% + A0} de (30)
0

weighting the tracking error ¥, —y against the yawing rate y and the commanded
acceleration a,, with weighting factors 1, and 4,, respectively. This yields the following
steady-state solution for the optimal commanded acceleration

av=Kp(wr_w)_Kd‘& (31)

k=(1)" K=o L)+ A)” 32
)+ () ) o

Integral action may be obtained by modifying the commanded acceleration according
to

with

T
a,= K, —¥)— K +K, L[lh —¥()]de (33)
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where a suitable choice of K; is

= Kl’
5K, .

This corresponds to T;=5T; in a PID controller. The control input is obtained by
transforming the commanded acceleration according to

d=1ha,+dy (35)

where the hat denotes the parameter estimates. Consequently, the error dynamics is
obtained as

K;

m*() —a,)=ni*a,+d*(U/LW (36)

Optimality with respect to (30) require that rii* = d* =0 (no parametric uncertainties).
This suggests that adaptive control theory should be applied. Let the error dynamics
(36) be written as

x=Ax+ b% oTo* (37)
where x=(y —,, /)" and

0 1 0
A=[_K _Kd] b=[l]
P
U
v =[“w L "D’]' & =it 8T (8)
Theorem 3.2 (Adaptive linear quadratic optimal control)

The control law (10) with the optimal commanded acceleration (31) and the parameter
update law

6*=—r'‘¢e; Ir=r">0 (39)
where e=c" x and
A"P+PA=-Q
Pb=c (40)

and P=P">0 and Q= Q" >0, yields a globally stable system.
Proc E Define a scalar Lyapunov function
Wx,ﬂ'*)=xTPx+$ﬁ*Tl"ﬁ* (41)
Differentiating V with respect to time together with (37), yields
V=x"ATP+ PA)x+%(BT(F5“ + @b Px) (42)

Finally, substituting of equations (39) and (40) into (42) yields
V=—x"Qx<0 43)

which according to Lyapunov stability theory for autonomous systems ensures that
Y(t)— 1), as t—oco and that §%(z) is bounded. §*(r) will converge to zero if the system is
PE. O
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4. Simulation study

The ship model used in the simulation study is adapted from Van Amerongen
(1982). In this reference, ‘the R.O.V. Zeefakkel’ is described by the following set of
parameters

L=45(m) U =50(m/s)
K=05()  b=20(-)
T=31(s) by;=08(s%
where b, and b, are found from the reversed spiral test. Consequently,
ny=b/lb;|=10;  ny=b,/b,|=04(s?)
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Figure 3. Desired yaw angle i, and rudder angle & versus time.




236 T. I. Fossen and M. J. Paulsen

time [5]

Figure 4. Yaw angle tracking error { and yaw rate tracking error lF versus time.

which clearly is a course-stable ship. In the simulation study a sampling rate of 10 Hz
was used. The controller parameters were chosen as (Theorem 3.1) y, =10%, y,=10%,
y3=10°% and A=0-2. The measurement noise was chosen as Gaussian white noise
processes with maximum amplitude of 0-1 (deg) and 0-05 (deg/s) for the yaw angle and
the yaw rate, respectively. The parameter estimates: 7*, df and d% during course-
changing are shown in Fig. 2.

The desired yaw angle ¢, and the rudder angle 4 is shown in Fig. 3 while the yaw
angle and yaw rate tracking errors are shown in Fig. 4.

5. Conclusions

A direct adaptive autopilot based on feedback linearization has been derived.
Particular attention has been made towards course-keeping and course-changing
manoeuvres. It is believed that the optimal course-keeping autopilot will be superior
conventional autopilots with respect to performance and fuel economy. The perfor-
mance of the turning controller was illustrated through a simulation study. Global
stability of both adaptive controllers was proven by applying nonlinear stability
theory.
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Appendix A. Stability theory

During tracking of time-varying reference trajectories like course-changing
manoeuvres the following lemmas from non-autonomous stability theory can be
applied (Popov (1973)).
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Lemma A.1 (Barbdlat’s lemma)
If the function g(t) has a finite limit as t— o, is differentiable and ¢(z) is uniformly
continuous, then §(t)—0 as t—co. The proof is found in Barbdlat (1959).

Lemma A.2 (Lemma for global stability)
Assume that there exists a scalar function V{(x,t) satisfying

™ l:"(x, t) is lower bounded
o V(x,t) is negative semi-definite
e V(x,1) is uniformly continuous in time

then V(x,£) —0 as t— 0.

Remark: (Uniform continuity)
A sufficient condition for a differentiable function V(x,f) to be uniformly
continuous is that its derivative ¥(x, ) is bounded Vi >t,.
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