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Efficient inverse position transformation for TR 40005
robot manipulator
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An efficient method is developed for computing the inverse kinematic position
solution with a closed form for the TR 4000S spray painting robot manipulator
with five degrees of freedom and non-spherical wrist construction. The inverse
kinematic problem is defined as the transformation from Cartesian space to the
joint space. The solution is based on the geometrical separation of the arm and
wrist of a robot manipulator and shows that it is very systematic, efficient and
easily derived.

1. Introduction

A robot manipulator consists of a number of links connected together by joints.
In order to position and orient the end effector of the robot manipulator arbitrarily
in space, six degrees of freedom are necessary: three degrees of freedom for the
position and three degrees of freedom for the orientation. Each robot manipulator
joint can provide one degree of freedom, and thus a robot manipulator must have a
minimum of six joints if it is to provide six orthogonal degrees of freedom in special
position and orientation.

However, many tasks involve operations requiring fewer degrees of freedom,
which can be realized by robot manipulators supplied with fewer than six joints.
Such tasks appear, for instance, in the manipulation of axisymmetric objects such as
turned workpieces, cylindrical tools and spray painting. These operations are rather
frequent in industry, that is why five-degree-of-freedom robot manipulators are so
common.

The computational efficiency of inverse kinematics is very important in robot
manipulator research. In many path control schemes and motion planning, for
instance, it is necessary to calculate the inverse kinematics of a robot manipulator at
fairly high rates.

Inverse kinematics with a closed form solution for robot manipulators is attract-
ing more and more attention from robot researchers, because it is much faster and
more stable than numerical solutions in computation. The inverse kinematics with a
closed form has been investigated for a six-degree-of-freedom robot manipulator
and effective algorithms have also been developed (Featherstone (1983), Hollerbach
and Sahar (1983), Low and Dubey (1986), Paul (1981)). However these algorithms
can only be suitable for a special robot manipulator with a spherical wrist where the
wrist axes intersect at one point.
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A more general algorithm for treating a six-degree-of-freedom robot manipula-
tor with a non-spherical wrist has been developed by Wang and Lien (Wang (1988),
Wang and Lien (1987a, b)). This approach is based on separating such a six-degree-
of-freedom robot manipulator into two parts: the arm with the first three joints for
the major positioning, and the wrist with the last three joints for the major orienta-
tion. The basic construction model for robot manipulators which are commercially
available is considered, and these have five types of arm and two types of wrist. The
approach for computing the inverse kinematics of robot manipulators is very sys-
tematic, efficient and easily derived.

After the six-degree-of-freedom robot manipulator with a non-spherical wrist
has been dealt with to provide a set of inverse kinematics solutions with a closed
form, attention is turned to the five-degree-of-freedom robot manipulators with a
non-spherical wrist. According to author’s knowledge, no such solutions with a
closed form for five-degree-of-freedom robot manipulator have been published. This
paper will describe how the approach for six-degree-of-freedom robot manipulators
can be extended to obtain inverse kinematic solutions with a closed form for five-
degree-of-freedom robot manipulators. The TR 4000S spray painting robot manipu-
lator serves as an example.

2. General principles

At first, we will briefly review the approach which has been developed to
compute the inverse kinematic solution with closed form for the six-degree-of-
freedom robot manipulators with a non-spherical wrist commonly used in industry
(Wang and Lien (1987a)).

Though it initially appears to be difficult to find the inverse kinematic equations
of a robot manipulator, when the robot manipulator is separated into two parts, the
task becomes relatively simple and direct. The position and orientation of the end
effector of the robot manipulator 2T is the product of the matrices (Pieper (1969)).

gT = A1A2 A3 A4 A5 Aﬁ

By the associative law, the product of the matrices can be regrouped into two
subsets which represent the arm and wrist respectively.

oT = (414, A3)(A4 As Ag)
where
AjAy Ay = gT = ET 1)
and
A AsAg=3T=4T 2

The superscripts designate the reference frame; a represents the tip of the arm; and
w represents the tip of wrist, i.e., the centre of the end effector of a robot manipula-
tor.

The IT given for the end effector can be written as a 4 x 4 homogeneous matrix
composed of an orientation submatrix R and a position vector P (Paul (1981)).
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We can get the vector 2P directly using a vector analysis method. The detail will be
considered in the next section.

op_0p_0p
From Eqn. (1),
9R(0,0,6,) 3P0,0
A1A2A3=|:3 (102 3) SP( 11203)]

We can get 8, 6,, 05, the first three joint variables, from the solution of the follow-
ing equation:

gP(9192 93) = SP

The orientation of the end effector of the robot manipulator can be considered as
the product of the orientation of the arm and the orientation of the wrist:

6R=35R¢R =JR\R 3)
From Eqns. (2) and (3) we can obtain
SR=(GR)"'gR=1\R (@)
where
OR = [N § 4]
9R) = rotation part of matrices (4,4, A3)
3R) = rotation part of matrices (4, A5 Ag)

We can get the last three joint variables 6, , 85, 8 by solving the Eqn. (4).

Now we will consider five-degree-of-freedom robot manipulators which lose one
degree of freedom in the wrist configuration, so that it cannot reach the any arbi-
trary place in space. A five-degree-of-freedom robot manipulator can simply be con-
sidered as a six-degree-of-freedom robot manipulator in which one joint variable is
fixed as zero or some suitable value. The lost degree of freedom may either be in the
arm or wrist part of the robot manipulator. In either case, the solution of inverse
kinematics can, in principle, be obtained by the application of the existing algorithm
for a six-degree-of-freedom robot manipulator. The only necessary additional step is
to determine which joint can represent the lost degree of freedom and this is not so
difficult.

In most practical cases, such as parts handling, assembling and spray painting,
one degree of freedom in orientation may be unnecessary, so one joint of wrist
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construction can be omitted. Then it will be simple to treat five-degree-of-freedom
robot manipulators, since we only need to assign zero or some other suitable value
to the joint variable of wrist. For example, if the degree of freedom of rotation
around the approach direction is not necessary, the 04 can be assigned a value of
90°, the approach for a six-degree-of-freedom robot manipulator can then easily be
extended to solve five-degree-of-freedom robot manipulators. In the next section, we
will use TR 4000S as a example to demonstrate how to extend the approach from
six-degree-of-freedom to five-degree-of-freedom robot manipulators.

3. Coordinate frames for TR 4000S robot manipulator

The configuration of TR 4000S spray painting robot manipulator is shown in
Fig. 1. The axes of its joint coordinate frames are assigned according to the rules
established by Denavit-Hartenberg (Denavit and Hartenberg (1955)). Considering
Fig. 2, the link parameter is given in Table 1.

Based on the generalized D-H transformations the following homogeneous
transformation matrix derived for the ith joint is given as:

ch, —s0,co; s0;s0; a;ch;

L 50, cOico; —cO;s0; a;sh,
““lo S0 ca; d;
0 0 0 i

Figure 1. TR 40008 spray painting robot manipulator.
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Figure 2. The coordinate frame for TR 4000S robot manipulator.

All the transformation matrices for the TR 4000S robot manipulator are given as

follows:
Cq 0 —$1 0 Cy — 8y 0 a,C,y
N 0 ¢c; O 83 c; 0 ays;
A = 4, =
! -1 0 d, 2710 01 0
0 0 1 0 0 0 1
Joint 0, o a; d;
1 0, —90° 0 d,
2 02 0 a 0
3 0, 0 a, 0
4 0, 90° 0 d,
5 05 -90° 0 ds
6 90° 0 0 ds

Table 1. Link parameters for TR 40008 robot manipulator.
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-c3 —s3 0 asc,] (¢, O s, O
S3 C3 0 a353 S4 0 —C4 O

A = A —

o 01 o0 *“lo 1 0 4,
| 0 0 0 1 | (0 0 0 1
[¢cs 0 —ss O] [0 1 0 0
ss 0 ¢ O 100 0

A = _

T lo -1 0 ds 4=10 0 1 dg
(0 0 0 1] 0 0 0 1

The transformation matrices for the arm and wrist parts are respectively given as
follows:

Cl 0 _Sl 0 CZ _Sz 0 a:cl CS _53 O a3C3
0 ¢, O|ls ¢, 0 a,s s ¢y 0 ajs
OT — 4. A Ax — Sy 1 2 2 252 3 3 393
. 17293 7 1o -1 0 4,ffo0 01 0 [|O 01 0
| 0 0 0 1 0 0 0 1 0 0 0 1
[cic23 —¢1523 —5 ci(azcy3 + ay¢5)
_ | 51623 —S1523 Cy si(ascyy + az¢y) ©6)
—833 —Ca3 0 —azs;; —ays; +d,
| 0 0 0 1
(¢, 0 s4 O0]fes O —s5 0][0 1 0 0
0 —cg O}ls 0 ¢cs Ofl1T 0 0 O
ST = A, A A, = Sa 4 5 5
g 4760 1 0 duffo -1 0 dsfl0o 0 1 d
1 0 0 0 1 0 0 0O 1{|0 0 0 1
[ —5, cacs —co5s —dgcyss+ dssy
_ Cq S4Cs5 —5455 —dgSq55—dsCs Q)
0 55 Cs decs + d,
| O 0 0 1
where

ci=cosf;; s;=sinb;; ¢;=cos(f; +6); s =sin(6; + 65).

4. Solution for arm joint variables 0,, 0, and 0,

4.1. Finding the approach vector of the end effector A
The Transformation matrix of the end effector of the robot manipulator is given

as follows:
N S A P
o _
6T_[0 0 0 1] ®

We can obtain the approach vector directly from Eqn. (8).
A=[A4,4,4]1
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4.2. Computing the arm position vector °P
The position vector of the end effector is taken from Eqn. (8),
¢P=[P.P,P] ©)
Seeing the vector relationship in Fig. 2, the vector is given as follows:

?vP1 =|3P1|A=!d51A

or
WP |ds| A,
wPiy | = 1dsl4, (10)
wPiz lde 1A,

According to Eqns. (9) and (10), the vector 2P is given as follows:
Px |d6|Ax Px_|d6|Ax

SP=3P—P=|P, |—|ldslA4, |=| P,—|dslA, (11)

Pz |d6|Az Pz_'dﬁlAz

Assuming that 8¢ is equal to 90°, then Z,, axis of joint 5 is always parallel to the
normal vector of the end effector. We can get
|ds|N,
wP2 = —|ds|N = —| |ds|N, (12)
lds|N,

From the operation of vector, we obtain
aP=5P 0P, (13)
Substituting Eqns. (11) and (12) for Eqn. (13),

Px_ld6'A1+ld5le i
aP =3P +|ds|N =| P, — |dg|A4, + |ds|N, (14)
P, —|dglA, +1ds|N,
Z,, the axis of joint 4, is always perpendicular to Z,, the axis of joint 1 and Zj is

also perpendicular to Z,, the axis of joint 5. Then Z; can be expressed the cross
product of Z, and Z, as follows:

_Ny
23 = ZO X Z4 = _Nx
0
The vector 2P, is easily given as follows:
_|d4|Ny
3})3 =|d4|Z3 =} —|d.|N, (15)
0

Vector algebra is used to give the position vector of arm tip )P as follows:

op_0p _0p, (16)
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Substituting Eqns. (14) and (15) for Eqn. (16),
aPx P, —ds|A, + |ds|N. +|d4|N,
SPy T Py_|d6|Ay+|d5INy+|d4|Nx
oP. P, —|dslA, + |ds|N,

4.3. Computing 6., 6, and 0,
From Eqn. (6),
c1(azcas + a2€2)
aP = 5,(a3 23 + 82C3) a7
—a3833 — 35, +dy

Equating the vector component of 2P with the components of Eqn. (17),

0P, =cy(aycyy +a; C3) (18)
9P, = si(a3¢y3 + a2 c3) (19)
P, = —a35,3— 25, +d, (20)

Dividing Eqn. (19) by Eqn. (18), we can get

5y _ay
Cy aP,
Then
6, = atan 2 (oi ) @1)
or
0, =0, + 180°

Squaring Eqns. (18) and (19), then adding,
(@3¢z3 + @2 C5)° = oP% + op?
3 Cy3 + 3¢5 =/ oP3 + opz 1 0p?
To simplify the expression, let
OpZ + 0P
Then,

Cpz = X246 (22)

as
Isolating s,5 in Eqn. (20) and employing the identity and Eqn. (22)
33+ ¢33 =1

op _d
Lt —1a+ a,5; (23)
3
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op,—d, +a,s, 2+ o—ac, 2_1
—a, a;

CP, — d,)? + 2°P, — d\)a, s, + a3 s3 + o — 2ua,¢, + a3 = &3

Regrouping,
2(2Pz —dya, s, —2ea,c;, = a§ - a% - (t?Pz - dl)z — o
Let
Pz — dl = Aa a=hB
Then,
2 _ g2 — 47— Bz
As: — B62 = a3 az 202
Let

a2 —a — A2 — B?

2a,

-D

We have now solved these types of equations and obtained the solutions as follows:
(Paul (1981), Wang (1988), Wang and Lien (1987b)).

B D
0, =atan 2| — ) — atan 2 24
? (A) (iJA’ + B? — D’) =

To solve 85, dividing Eqn. (23) by Eqn. (22), we obtain

S_ZQ_‘?P,—dl+a2s2/—a3=2P,—dl+a2s2

Ca3 oa—a Cz/as ayCy — o
Then,
op, _d
@, + 6, = atan 2(“ et S sz)
A€y — O
or
OP _
6, = atan 2(‘ :=di F “232) -0, (25)
A Cy — &

5. Solution for wrist joint variables 0, and 6,

After solving the arm joint variables 8,, 8, and 85, the next step is to determine
the wrist joint variables 6, and 65. We can get the rotation transformation matrix
from Eqn. (6)

C1€23 —¢C1523 —H5
R= | 51623 —51523 51 (26)

— 823 —Ca3
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From Eqn. (7),

_S4 C4 CS _C4 Ss
R = Cs SaCs  —S45s (27)
0 s Cs
From Eqn. (8),
N, §, A,
°R = N, §, 4, (28)
N. S, 4,

Since the rotation matrix is orthonormal, its inverse is equal to its transpose, or

€1€33 S1€23 923
(gR)_1 = (gR)T =| —C1S33 —81833 —C23 (29
—5 ¢y 0
Then the right side of Eqn. (4),
C1Ca3 51Ca3 —833 Nx SJ: Ax wa wa wa
(gR)_l gR = —C1523 —8:823 —Cz3 Ny Sy Ay = wa Swy Awy
-8 C1 0 Nz Sz Az Nwz Swz sz
(30)
where
Nox =¢1¢23 Ny + 51623 N, — 533N, (31
wa= _ClszaNx—SlszsNy—CzaNz (32
Nwz= _sle+clN}’ (33)
wa=clcz3sx +S1C23Sy_S23 Sz (34)
Swy = —C15238,; — $1523 Sy — €338, 3%)
ngz = _sle + CIS}' (36)
Ay =€1023 A5 + 510334, — 5234, (37)
Awy = —C;1833 Ax — 81823 Ay — Ca3 Az (38)
sz = '_Sle + ClAy (39)
According to Eqns. (27) and (30), we obtain the equation as follows:
—S4 C4Cs —C45s wa wa wa
Cqs S4C5 —S485|= | Ny Suy Auwy (40)
0 Ss Cs Ni:ll 1550 Az

Equating elements (1, 1) and (2, 1) of Eqn. (+v),
8= N wx (41)
co=N,, “2)
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Dividing Eqn. (41) by Eqn. (42) yields:

—N
tan 0, = Nw:”‘
Then,
6, = atan 2( _NA::”) 43)
or
s = 04 + 180°
Equating elements (3, 2) and (3, 3) of eqn. (40),
S5 = S, (44)
cs=4A,, (45)
Dividing Eqn. (44) by Eqn. (45),
tan 65 = j‘:
Then,
05 = atan Z(S“”) (46)
A,,
or
fs =65 + 180°

6. Discussion

There is an exception, the singularity case in the above computation. To get the
wrist position, Z, = Z, x Z, is used. However when Z,, is parallel to Z,,, Z, cannot
be computed from this equation any more, since Nx = Ny = 0 in this case, which is
called robot manipulator singularity. When this case occurs, that is, Z, is parallel to
Z,, we may compute the wrist position 2P by using the following procedure. Figure
3 shows the projection of robot manipulator on the X-Y plane. We can get

by d
a = tan“(u), a, = sin (——‘-‘—)
} ) JIPz + P2

0P = /9P + P2 — d2

Then the wrist position 2P may be expressed as follows:
P, aP' sin (@, + ay)
op, OP’ cos (o, + a3) 47
oP. aP.
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Figure 3. The projection of TR 4000S on X-Y plane.

7. Conclusions

A general approach to computing the inverse kinematic solutions with a closed
form for robot manipulators commonly used in industry is very attractive for the
robotics researchers. We have proposed such a general approach which is suitable
for six-degree-of-freedom as well as five-degree-of-freedom robot manipulators with
a non-spherical wrist. The general algorithm for five-degree-of-freedom robot
manipulators is as follows:

Step 1. Finding the approach vector of the end effector 4;

Step 2. Assigning zero or some suitable value to the joint variable which corre-
sponds to the lost one degree of freedom, and then computing the arm
vector OP.

Step 3. Computing the arm joint variables;
Step 4. Computing the rest of the wrist joint variables.

This approach shows that the number of computations are kept to a minimum by
reducing the whole problem into a separate subproblem which in turn lowers the
likelihood of error and helps to reduce the tediousness of the work.
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