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Predictive control based upon state space models
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Repetitive online computation of the control vector by solving the optimal
control problem of a non-linear multivariable process with arbitrary per-
formance indices is investigated. Two different methods are considered in the
search for an optimal, parameterized control vector: Pontryagin’s Maximum
Principle and optimization by using the performance index and its gradient
directly. Unfortunately, solving this optimization problem has turned out to be a
rather time-consuming task which has resulted in a time delay that cannot be
accepted when the actual process is exposed to rapidly-varying disturbances.
However, an instantaneous feedback strategy operating in parallel with the orig-
inal control algorithm was found to be able to cope with this problem.

1. Introduction

Many industrial processes which are multivariable in nature, are subject to large
time-varying disturbances and have constraints imposed upon both the control and
state variables. Predictive control techniques have been proposed as an online
system which permits the flexibility required to handle such difficulties.

Most predictive control techniques proposed so far, are based upon nonpara-
metric models such as an impulse response matrix or a discrete convolution matrix
(Cutler and Ramaker 1980, Richalet et al. 1978). As long as the process can be
described by a set of linear, differential equations, this modeling approach is applic-
able. In many industrial applications, however, the processes are run with a wide
range of operating conditions so that non-linearities will usually occur. Internal
state variables that are not defined as inputs or outputs in a linear model, may be
constrained to stay within certain limits. The existing predictive control techniques
are not suitable for handling such constraints in a direct and logical manner. In
addition, a discrete convolution model is a * non-minimal realization’ with the result
that the control algorithm derived may be wasteful in terms of computational time.
The CARIMA plant model used in the generalized predictive control algorithm
(Clarke et al. 1987) is another input-output description, which has some of the same
faults.

In a state space description, non-linearities can easily be represented and con-
straints on any variable taken care of by inequalities. The state variables usually
represent physical quantities and the predicted variations of the different state vari-
ables can give important information about the future. The state space description
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constitutes a parametric model. In formulating such a model, basic physical laws
representing material and energy balances and elementary information about the
physical dimensions of equipment will help to establish the mathematical structure
of the model. Continuous online estimation of model parameters (model
identification) will improve the model to give a satisfactory representation of the
process dynamics.

Reid (1981) makes use of a state space model in his approach to predictive
control. Even so, this formulation is limited to quadratic performance indices,
weighting the deviations in predicted output from the desired ones and sometimes
weighting future changes in input. In this way a reference trajectory has to be for-
mulated. Using arbitrary performance indices, however, optimal trajectories are
always ensured although computational requirements are increased.

This paper is organized as follows; in § 2 we discuss a proposal for a complete
system for predictive control based upon state space models. In § 3 we formulate the
optimization problem, in § 4 we discuss control strategies and computer require-
ments, while some simulation results are presented in § 5.

2. Complete system for predictive control

An industrial program package for multivariable, predictive process control
based on state space models should consist of the components shown in Figure 1
(Balchen and Mumme 1987). From an initial study of the process, we obtain the
basic concept for a suitable model structure and parameter values, which have to be
updated online by a structure identification and parameter estimation algorithm.
Moreover a state estimator should be included, such as an extended Kalman filter.
In parallel with this real time model, there is an equivalent model which operates
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Figure 1.

Components of the total system for predictive control.
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repetitively with a highly reduced time scale. The estimated states and parameters of
the real time model determine the equivalent quantities in the repetitive model. This
makes it possible for an iterative optimization algorithm to find a set of control
variables which ensure optimality in the future. The set of control variables is
recomputed repeatedly in order to take care of time-varying disturbances and
changes in performance criteria. The required repetition rate for the computation of
new control variables depends on the rate of change in the disturbances. In order to
avoid serious problems in the future, such as saturation in the control variables or
state variables exceeding constraints, each optimization has to be based on a predic-
tion over a time horizon longer than the dominating time constants in the closed
loop.

To achieve satisfactory predictions, it is important to be able to estimate and
predict the most dominating disturbances. If we know the system which generates
the disturbances, they can be modeled and included in the process model in Fig. 1.
A slowly varying disturbance can be modeled as a Wiener process, continuously
being updated by the integration of the innovation process of a Kalman filter. Non-
estimated disturbances may result in steady state prediction errors. In the predictive
control scheme MAC (Mehra and Mahmood 1985), correction terms are introduced
to overcome this problem. This corresponds to the strategy of integrating the inno-
vation process. The main difference is that the Kalman filter ideally generates
optimal estimates of the disturbances.

In Fig. 1 we notice that the estimation of the state variables, disturbances and
model parameters takes place in parallel with the computation of the optimal
control variables. The optimization part therefore continuously generates a new set
of control variables.

3. Formulation of the optimization problem

It can be seen in Fig. 1 that the development of the details in each component of
the total system for predictive control can be made nearly independent of each
other. In this paper we assume that we have an ideal model of the process and that
the state variables are available from this model.

The problem is formulated as follows. The process is described by

x=f(x, u, ) (1)

where

state vector
control vector

AR I

disturbance vector
J vector of non-linear functions

A specification of the performance of the control system can be represented mathe-
matically by a performance index

131

J = S(x(t,) + J Lix, u, t) dt )

to
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where
to initial time for the optimization
t, =T +t, final time for the optimization where T is the time-horizon
S(x(t,) is a scalar function weighting the final value of the state vector
L{x, u, t) is a scalar function expressing costs and profits resulting from the
process.

The desired control vector is now the one that minimizes (or maximizes) the
performance index (2). There is no particular restriction that the function L has to
be a quadratic function for instance as is the case when an analytical solution is
desired. An exact specification of the final state is avoided by choosing an appropri-
ate S, and since the initial time state vector and the length of the time horizon are
both given, this is of vital importance when an optimization algorithm is to be
deduced.

Constraints on the state variables or control variables may often be expressed
through relations such as

Cfu, ) <0 i=1,...,r 0
and
Zx,)<0 j=1,...,n @

How such constraints are to be handled in the minimization algorithm depends on
whether they are hard or soft, i.e. whether dynamic violations of the constraints are
allowed or not. Constraints on the control variables do not usually cause any
problem, although the convergence of the solution will tend to be worse. As far as
constraints on the state variables are concerned, difficulties may arise. So far we
have experienced that penalty functions in the performance index is the best way to
handle such constraints.

4. Control strategies and computer requirements

Solving the optimization problem appears to be a rather time-consuming task.
Therefore it is of vital importance to choose the most effective algorithm and a
strategy of control vector computation that ensures as optimal a solution as pos-
sible. We denote the time required to compute an optimal control vector by dt.
Assuming that we want the computer to be occupied all the time, immediately after
a new optimal control vector is available, we have to update the model and con-
tinue with the computation of the ‘next’ control vector. Updating the model during
the optimization period, usually makes the convergency worse and is not to be
recommended. The result is that fast changes in the disturbances or the performance
criteria cannot be taken into consideration until the next optimization period. This
creates a time delay of nearly two times dt in the worst case. If it is impossible to
predict the disturbances rather accurately, a strategy of control vector computation
that ensures some kind of instantaneous feedback of the registered deviation from
the predicted state-space variables should be used. In other words, we should find
an approximation to the ideal optimal control vector that includes a feedback strat-

egy.
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Consider the optimal control vector given by
u=g(x8,1) ©)

Our prediction of the future states is denoted by x, while in fact we will have devi-
ation dx from this prediction. A first order approximation of (5) is then given by

u =~ g(x° 0, l:)+M ox
ax x=x0
=u’ + G(x — x9 6

An optimal control variable #° corresponds to an optimal predicted trajectory x,
while G is the feedback matrix.

Substitution of (6) into the state space model and performance index in order to
determine # and G leads to an overdetermined system of parameters in the optim-
ization algorithm. Simulation results so far indicate that «° should be chosen as the
optimal, nominal control vector computed by optimizing (2), while Eqn. (1) is
regarded as a constraint. A suitable G matrix may be found by a specification of the
eigenvalues of the closed loop system (linearized system). The constant elements of
the G matrix may vary as the nominal trajectory runs through the non-linear state
space. G then ensures an instantaneous feedback strategy which takes care of
rapidly-varying disturbances, while #° controls the nominal trajectory x°, when the
predicted disturbances and changes in the operating conditions are taken into con-
sideration.

Optimization of (2) and (1) with respect to #° may be done by using Pontryagin’s
Maximum Principle. Generally this leads to a two point boundary value problem
(TPBVP) which cannot be solved analytically. Therefore an iterative numerical solu-
tion method is required. An alternative strategy to using the Maximum Principle
will be to optimize the performance index directly by using a gradient technique.

Most effort so far has been directed to the development of an effective optim-
ization algorithm. Both methods mentioned above have been investigated and
applied. In order to save critical time-consumption, a parameterized control vector
has been used. Exponentially decaying weight upon future disturbances is the inher-
ent result of traditional optimal control (LQ). According to this, an exponential
distribution of the subintervals referring to the different parameters of the control
vector seems to be logical. Simulation results indicate that a more moderate increase
should be used.

A rough estimate of the computer costs is interesting to get an idea of the appli-
cability of the predictive control algorithm. We assume that 3r parameters are to be
computed, where r is the dimension of the control vector (i.e. each control variable
is represented by three parameters). We also assume that some of the state variables
in the state space model are decoupled (or weakly coupled). Moreover we assume
that the process dynamics allows the process to be simulated over the time horizon
by means of the Euler forward integration method with 50 steps, and that 30 iter-
ations (6 searching directions) in the optimization algorithm result in a control
vector which is sufficiently close to an optimal value.

For the optimization algorithm based on the Maximum Principle, this leads to a
time-consumption in the order of

15 ~ 36 % 10* » n*%{
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where

¢ is the time consumption of a floating point operation
n  is the number of state variables and we assume that
n 1is2-5r

The corresponding expression for the algorithm based on minimizing the per-
formance index by the use of a gradient technique is

£ ~ (2160 # n*% + 11160 * n*% + 9000 * n®2){

Using a Motorola 68020 processor with a floating point co-processor 68881, { is
about 10 us. With n = 10 and n = 50 the time consumption is

n=10 ti~56s t5~53s
n=>50 t;~39s t5 ~ 157 s

The time consumption may seem alarming. However by increasing the efficiency of
the optimization algorithm and accepting aless stringent solution the number of
iterations can be reduced. Moreover faster processors can reduce the computation
time to an acceptable quantity, and parts of the algorithms are well suited for paral-
lel processing.

5. Predictive control of a simple chemical reactor

In order to try out alternative algorithms for predictive control, a lot of the
simulations on an ‘example process’ have been carried out. Although the model
contains non-linearities, linearization and the application of a PI-controller results
in a satisfactory behaviour of this simple process in most cases. Our intention is to
show that the predictive control algorithm can compete with conventional control-
lers even when simple processes are considered. A more realistic process with hard
constraints on control variables and more dominating non-linearities is studied in
another article (Balchen et al. 1988).

If an irreversible chemical reaction of A % B takes place in a continuous, well
stirred reactor and the concentration of a component A and the temperature in the
reactor are defined as state variables with the rate of energy supply as the control
variable, energy and mass balances result in a non-linear state-space model
(numerical values are chosen from Perlmutter 1972). The total mass in the reactor is
assumed to be constant, and the feed rate, the concentration of component A and
the temperature in the feed are considered to be the disturbances. In all the simula-
tion results in Figs. 2 to 8, both the concentration deviation of component A from
0-3 mol/l and the rate of energy supply are quadratically weighted in the per-
formance index. Moreover a time horizon T = 05 min is used in the optimization
algorithm and the control variable is represented by three parameters. The control
variable is updated every 0-1 min, even though the computational requirements
outlined in the previous section, indicates that it would be possible to update the
control variables 5-10 times as often.

In Figs. 2 to 5 the reactor is exposed to a stepwise increase in the feedrate of
18% at t = 1-0 min. This can be due to some unpredictable changes (a destroyed
valve for instance) or a conscious (predictable) change in the operating conditions.
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Figure 2. feedrate change not predicted, G = (0); — — — — feedrate change predicted,
G =(0).
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Figure 3. feedrate change not predicted, g = 286, g, = —0-299; — — — — feedrate

change predicted G = (0).
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Figure 4. Predicted feedrate change rate of energy supply limited to 245 x 10°
J/min; — — — — rate of energy not bounded.

If the reactor form a part of a more complex industrial process the average
feedrate may alter in a more stochastic manner. In Fig. 6 a possible deviation from
the mean value is shown. An estimate of this deviation helps to control the reactor.
We have assumed that we were not aware about how the disturbances have altered,
and the estimate was generated by filtering the disturbances. In each optimization
the disturbance then was predicted to be constant through the optimization
horizen, the constant being given as the estimated value at the particular time. The
simulation results are shown in Figs. 7 and 8.

Figures 2 and 3 indicate that a feedback matrix G (ref. eqn. 6) is not necessary
when it is possible to predict the disturbance, while the improvement is considerable
when the stepwise change cannot be predicted.

Rate of energy supply [109 J/ain)
- 2.6 g 2
i 'Y
e b=
e b o T
- 2.3
ool aal
- 2.9
0.% 13 Oiss [min] 2.3

Figure 5. Rate of energy supply corresponding to the curves in Fig. 4.
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Figure 6.

When the disturbance can be predicted and boundaries on the control vector are
take into consideration, the process ‘prepares’ the stepwise change in the feedrate.
This is shown in Figs. 4 and 5.

It is clear from Figs. 7 and 8 that instantaneous feedback through the G matrix
is of great importance when the process is exposed to rapid time-varying dis-
turbances.

In Figs. 9 and 10 the concentration and rate of energy supply, resulting from an
unpredictable stepwise change in the feedrate, are compared to the results achieved
with a Pl-controller. Due to non-linearities and dynamic coupling with the tem-
perature, oscillatory behaviour is inevitable when the process is governed by a PI-

0.323

" Concentration [mol/l] -

Time (win]
0.3 hid 1.3 t

Figure 7. g, = 286,9,= —0299; - ——- G =(0).
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Rate of energy supply [109 J/uin])

Time (min]
1.5 2.5

Figure 8. g, = 286,g, = —0:299; - — — - G = (0).

controller. It can be seen from Fig. 10 that predictive control results in a more
economical means of controlling the energy supply. A PID-controller may be used
to reduce the concentration ‘amplitude’. However the same effect can be achieved
with the predictive control algorithm by reducing the weighting factor for the rate of
energy supply in the performance index. All in all we can conclude that the predic-
tive control algorithm has shown results that are preferable to that of a PID-
controller even for this simplified control problem.

6. Conclusion

Some principles for a predictive control strategy based on state-space models are
presented in this paper. So far the effort has been directed at the optimization algo-
rithm and parameterization of the control vector in order to keep the computation

Concentration [mol/1] Y

- 0.304 ]

P

a.5 1.3

Time {min] :

3

Figure 9. PI control; — — — — predictive control, feedrate change not predicted.
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Figure 10. PI control; - — — — predictive control, feedrate change not predicted.

time to a minimum, which is extremely important to make the controlled system to
function satisfactory.

The main disadvantage of the state space formulation is that a model structure
must be assumed. However methods for structure identification may be applied.
Since effective methods for parameter estimation exist and the model used in the
optimization does not need to be extremely accurate. Optimal estimation of the
state vector ensures optimal feedback control and representative estimates which
can be used as initial values in the optimization algorithm.

In a practical situation it may be impossible to predict the dominating dis-
turbances accurately. A control strategy that involves feedback from the estimated
state-space variables should therefore be used. The time delay caused by the time-
consuming optimization algorithm is thus not so critical, but it has to be small
enough to consider the constraints on the control and state variables in time. Even
with a Motorola 68020 processor supported by the 68881 co-processor, processes
with slow dynamics and n6t too many state variables can be controlled by the
predictive control algorithm.
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