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Modeling and non-linear self-tuning robust trajectory control of an
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A non-linear self-tuning algorithm is demonstrated for an autonomous under-
water vehicle. Tighter control is achieved by a non-linear parameter identifica-
tion algorithm which reduces the parameter uncertainty bounds. Expensive
hydrodynamic tests for parameter determination can thus be avoided. Excellent
tracking performance and robustness to parameter uncertainty are guaranteed
through a robust control strategy based on the estimated parameters. The non-
linear control law is highly robust for imprecise models and the neglected
dynamics. The non-linear self-tuning control strategy is simulated for the hori-
zontal positioning of an underwater vehicle.

1. Introduction

Conventional multi-variable and adaptive controllers are difficult to design for
autonomous unmanned underwater vehicles. This is because their strongly coupled
dynamics are highly non-linear and vary according to a vessel’s operating point. An
alternative design procedure is self-tuning non-linear control strategy based on
Robust Trajectory Control (RTC), Asada and Slotine (1986). The non-linear control
law which is calculated from a simplified model of the vehicle shows good per-
formance and robustness. The main advantage of this control strategy is that there
is one controller for each degree of freedom and only a restricted number of para-
meters to identify.

The RTC algorithm combined with a suitable non-linear recursive identification
algorithm is easy to implement. An adequate non-linear identification algorithm
such as the Non-linear Recursive Prediction Error Method (NRPE) (Zhou (1987)) is
well suited for this purpose. An approximate model can be identified off-line by a
self-test executed by the vehicle. If the vehicle undergoes a configuration change, the
self-test is executed autonomously under computer control. Before the mission, the
vehicle moves in a fixed pattern given by a cycle of step inputs to each thruster in
turn. During the run the position data is logged. This data is used as input for the
identification algorithm. The self-test can be programmed to be executed by the
computer on the vessel or as a previous off-line calculation. The self-tuning algo-
rithm does not need any a priori information of the vehicle’s hydrodynamic param-
eters. As a result of this, it is possible to schedule the control gains without
performing expensive model tests each time.

The non-linear identification algorithm will be tested on a SPRINT 101
underwater vehicle in the Ocean Basin at the Norwegian Marine Technology
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Research Institute. Later, several tests will be performed as a part of the Norwegian
Robotic Research Program®, Norwegian Institute of Technology.

2. Modeling of an autonomous underwater vehicle

The dynamic behaviour of an underwater vehicle can be described by Newton’s
laws of linear and angular momentum formulated in a vessel-based coordinate
system. The equations of motion for an underwater vehicle in 6DOF may be written
in the same compact state space form as robot manipulators (Fossen (1987)) where

Mg = Mg, x) + BU
&= J(x)g (1)

The bold type indicates vectors while the dot is the derivative with respect of
time. According to the SNAME notation (Society of Naval Architects and Marine
Engineers (1952)) the vessel’s velocity vector is considered to be § = [u, v, w, p, g, r]T
and the earth-fixed position/orientation vector is x = [x, y, z, ¢, 6, Y]~

M is 6 by 6 inertia matrix including the vehicle’s mass, added mass and inertia
tensor.

m—X, —-X, O —X, mz, —X; —my,— X;
-X; m—Y, -Y, —mz, — ¥, -Y mx, — Y,
M= -X, —-Y, m—Z, my,—Z, —mx,—Z, —-Z, )
-X; —mz,— Y, my,—Z, Ix—-K, —Ixy—K; —Izx—K;
mz, — X, -Y; -mx,—Z; —Ixy-K, Iy—-M; —Iyz—M;
—-my,— X, mx,—Y, -z, —Izx — K; —Iyz— M, Iz—N,

m is the vehicle’s mass including water in free floating spaces, I;; is the product of
inertia about the axes i and j and (x,, y,, z,) is the center of gravity. The added mass
is represented in terms of slow motion derivatives. As an example Y, . w is the force
in y-direction caused by an acceleration in the z-direction, where Y, = dY/ow.
Newman (1977) has shown that for a rigid body moving in an ideal fluid the mass
matrix is symmetrical ie. M = M”. In a real fluid these 36 elements may all be
distinct. Experience has shown that the numerical values of added mass in a real
fluid are usually in good agreement with those obtained from ideal theory (Wendel
(1956)).

The J matrix represents the coordinate transformation matrix between the
earth- and vessel-based coordinate systems. The coordinate transformation is
related through the functions of the Euler angles: roll (¢), pitch (6) and yaw (if).

L0
=0 7] ©

where J, represents the linear velocity transformation and J, is the angular velocity
transformation.

' The Norwegian Robotic Research Program is sponsored by the Royal Norwegian
Council for Scientific and Industrial Research and will include 40 doctoral candidates in the
general field of robotics
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where ¢(-) =cos ('), s(-)=sin (-) and ‘) = tan (-). Because of the symmetry
properties we have J; ! = J7. Notice J; ' # J3.
N is a non-linear vessel-based vector term including hydrodynamic, rigid-body
kinematic and hydrostatic forces. The non-linear vector N is written
Mg, x) = Ny(@) + Nyx) (6)
where the transformed gravity vector is
F—(W — B) sin 6
(W — B) cos 0 sin ¢
(W — B) cos 0 cos ¢
(y,W — ypB) cos 0 cos ¢ — (z, W — zp B) cos 6 sin ¢
~(x, W — xpB) cos 0 cos ¢ — (z, W — zp B) sin 6§
(x¢ W — xg B) cos 0 sin ¢ + (y, W — yp B) sin §

Nfx) = ™

(x,. ¥g» 2,) is the center of gravity, (x,, y,, z) is the center of buoyancy and W
and B are the vehicle’s gravity and buoyancy forces respectively.

The modeling problem is to determine the N, vector and the added mass coeffi-
cients in the mass matrix. The NV vector may be modelled as a Taylor series expan-
sion of § =[u, v, w, p, g, ¥Y]" where small terms are neglected. Another way is to
perform simulation studies of the actual vehicle on a computer. These simulation
results should be compared to model or full-scale tests to fit the coefficients to a
selected model. For parameter identification it is recommended to reduce the
number of parameters as much as possible. Often this will improve the identi-
fiability. Hydrodynamic coefficients which are known with sufficient accuracy may
be included in the model as constants with no need for parameter estimation.

B is the control matrix which depends on the vehicle’s thruster configuration
while U is the control vector.

3. Non-linear self-tuning control strategy

The self-tuning control strategy is based on off-line non-linear parameter identi-
fication. If an estimation of the Kalman filter gains for the state update are included,
these may be executed as an on-line calculation, due to the time-varying conditions
for underwater disturbances and changes in operating conditions, Fig. 1.

3.1. Non-linear recursive prediction error method

The Non-linear Recursive Prediction Error method (NRPE) (Zhou (1987)) is an
extension from the Recursive Prediction Error method (RPE) (Ljung (1987)). Both
methods are based on a parameter update through a Gauss—Newton search direc-
tion. The only difference between the linear and non-linear cases is the calculation of
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Figure 1. Self-tuning control scheme.

the prediction output and the gradient. In the non-linear case they are based on an
approximate second order non-linear filter combined with Ljung’s innovations filter.
This non-linear prediction filter model includes second order correction terms to
avoid biased estimates. The estimates are unbiased for non-linearities of the order of
less than two. The method has been developed both in discrete and continuous-
discrete versions by Zhou (1987).

Based on the ideas of Ljung’s innovations filter model where the Kalman filter
gain K(f) may be treated as an element of the parameter vector # to be estimated,
the non-linear continuous-discrete predictor with linear measurement is written

W=;’(ﬂ, u;t, X(t|t;, 0+ Bt|t;, 0) (8)
&t 4 1) = tisy) — D(OX(t;4 4, 0) 9
(. 0) = X(t5 4, 0) + K(t;4 4, O)e(t; ) (10)

where x is the state vector, y the measurement vector, f(') the non-linear vector
function and D the measurement matrix.
The k’th component of the second order bias correction B, is given by

B, = % tr {M X{t)} (1)

x>

The covariance matrix X and the gradient matrix = are calculated through the
equations

_#O.u; 1,311, 0)
o = TR (12
DD _ el ) + Xte1121070) + Vit (3
RIS, 0)= 35 (/0. us e 30117, 0+ Bl 0} (4
S¥(t) = 5‘% {0, u; 1, %) + Be|t, 0} (15)
6=8(1)
BULOD _ pogeiey, 0+ 57() 1)

dt
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where V is the noise covariance matrix of the process. After the integration of the
above equations, X(t;, ), X(t;;,) and E(¢;, ;) are available. The recursive scheme is
then written

Dit) = 3 T00R| a7
WT(ti+1) = DE(ti+ 1, 6) + Deft) (18)
Mtiey) = Di(tiy ) (19)
8tivy) =Wty ) — Htisq) (20)
ﬁ(ti+1) = ﬁ(ti) + alt;y et 4 1) (s 1) — e(‘i}] (21)
T(tiv 1) = 1) + alti s YTV 4 )& (0r ) (s ) — T(E)] 22)
a(‘n- )= é(‘;) S (779 B (PP (0 1)2_ Wepe1)e(tie ) (23)
&(t 1, 0) = 2(ti1 10 0) + K(ts 1, Oalt; ) 24)
X(ti 1) = [ — K(tys 1, O)DIX (11 1) (25)
Koltiss, 6) = [% K(tis s, e)] o) 26)

Bt 1, 0 =[1 — K(tis1, ODIE( 1, 0) + Kgltis 1, 0) — K(tis 1, ODg(t)  (27)

where I' is the Hessian, the second derivative of the performance index J(6) =
1e"()E (t)e(r) with respect to 6, ¥(t;, 0) is the gradient of the predicted output
(t;16) with respect to 6, £(1) is the covariance matrix of the prediction error and af(t;)
is the step size factor. The step size factor is suggested as

1
ofty) = i1 (28)
In the case where all states are measured, the matrix X(t;) may be replaced by
£(t) and Eqns 12, 13 and 25 removed. The use of the discrete version of the NRPE
is discussed in Zhou (1987).

3.2. Non-linear robust trajectory control

The non-linear robust trajectory methodology guarantees tracking precision.
Robustness to the uncertainty is explicitly guaranteed even for quite simplified
models. The methodology is based on a single-input single-output (SISO) formula-
tion of the control problem. One single controller is designed for each degree of
freedom rather than a high order complex multivariable controller. The control
methodology accounts for the multivariable effects and cross-coupling terms in an
easy way without any stability problems. The following equations are based on a
second order system (Yoerger and Slotine (1985)) described by

X =f(X, 0; 1) + b(X, 0; YU (29)

The parameter vector 8 is calculated from the NRPE method, f(-) is the systems
time-varying dynamics, b(-) is the control gain, X = [x, &]7 is the state vector, U is
the control force and x is the actual state.
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The uncertainty of the nonlinear function f(-) and the control gain b(-) is
known to within the following margins

| F(X, 05 1) — f(X; 1)| < F(X, 0; 1) (30)
where f(X, 0; 1) is the estimate of f(X; t) and
5(X 0;1) _
! STy S <p (31)

where B(X, 0; t) is the estimate of b(X; ¢) and f is the gain margin of the control
system. A sliding surface is defined as

(X;0)=%+4x, 1>0 (32)

where X = [%, x]7 is the tracking error vector and % = x — x,.

This corresponds to a time-varying surface in the state space R? that is a line
moving with the point (x;, X;) with slope, A, Fig. 2, where 1 is a design parameter
interpreted as the desired control bandwidth. Perfect tracking is defined as remain-
ing along the surface s(X, t) = 0. In order to have perfect tracking x(t) = x(t) the
sliding condition

1 d(s?)
2 dt

has to be satisfied where # is a small positive constant The sliding condition directly
follows from Lyapunov’s 2nd method where V(s) = 4s? is selected as the Lyaponov
function. A control law that satisfies this condition (Asada and Slotine (1986)) is

U =b"YX, 0; )[U — R(X, 0; 1) sat (s/$)] (34)
= —f(X, 0; ©) + X4 — AX (35)

where K(X, 0; t) is a discontinuous term across the sliding surface satisfying Eqn 33
and sat () is the saturation function. Adding this discontinuous term to the control
law guarantees robust stability within the specified uncertainty bounds.

sat (x) = sgn (x) |x| =1

sat (x) = x otherwise

< —nlsl (33)

and
sgn (x) = +1 x>0
sgn (x) = —1 x<0

To avoid chattering, the control law is smoothed out in a thin boundary layer ¢
around the sliding surface, Fig. 2. In this case the sliding condition is modified to

1d 2
25 <@ -nlsl (36)

The desired thickness of the boundary layer is calculated from

HO) = —Adl) + BK(X,, 05 1) i K(X, 0; i) > 20 "‘"”

) = — Aﬁg" +K(X,, 0;t)B if K(X,,0;6) < ’1";(‘)
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Figure 2. Sliding surface and the boundary layer (Asada and Slotine (1986)).
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with the initial condition

$(0) = BK(XA0), 0; 0)/2 (37
R(X, 6; 1) is calculated from
K(X, 0; t) = K(X, 0; t) — K(X,, 0; t) + A¢{()/B (38)
where
K(X,0;t)=F(X, 0;1) +n (39)

The use of the discrete version of robust trajectory control is discussed in
Delonga, Slotine and Yoerger (1987).

4. Application to a continuous system

4.1, Simulation study

A simulation study was performed to demonstrate the non-linear parameter
identification and the control strategy. A 3DOF model for the simulation of an
underwater vehicle’s horizontal motion was chosen as

Mg=My+U
where
g=1[uuv,r]"
v=[u,.u,Uu]1"
and
143 3 8
M=| 3 163 5
8 5 99
An adequate non-linear vector /V is
—120u | u|
Mg) =] —150v|v| — 30u|v| — 10v|u| — 50r|r|
—200r|r| — 10v]r|

A simplified non-linear model with 6 unknown parameters for identification was
used to demonstrate the self-tuning non-linear control algorithm. The predictor
does not include any off-diagonal elements in the mass matrix and is simply written
as

=Xy ol + X, U,
b= Y, 09|+ KU,
# = N ?|?| + N, U,

The non-linear functions f; and the control gains b, for the Robust Trajectory Con-
troller are recognized as

fn =“fuuu“”‘:", 51 =X,
L=Yubldl, b=,
f6=Nr|r}F|FIt 66=N:
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4.2. Simulation result

The parameter estimation was done off-line. A multilevel input signal was used
for excitation. This signal gave good convergence for the NRPE method for all
degrees of freedom. The maximum control force/momentum was limited to 300 N
for surge and sway and 300 Nm for yaw. These large control efforts may explain
some of the good convergence, even for sway. For vehicles such as ships, which are
not designed to move in the y-direction with any velocity, the convergence in sway
may be rather poor. This is well known from ship dynamics.

Figure 3 indicates that the values for the estimated parameters were

Xﬂﬂl = _0.86, X! = 3.52
Yq=—148, Y, =268
N"l"l - —2.17, .N‘ == 512

These values were used for the simulation of the control law together with
J. = 3.0 for the desired control bandwidth and n = 0.1. The proposed control strat-
egy was applied to a multi-axis coupled motion for the underwater vehicle. The 3
robust trajectory controllers gave very satisfactory results for all degrees of freedom,
see Fig. 4. The tracking performance will be reduced if the off-diagonal elements in
the mass matrix or the uncertainty bounds are increased. A good parameter identifi-
cation strategy makes it possible to reduce the uncertainty bounds and improve the
tracking performance. The boundary layer thickness and the sliding surface are
illustrated in Fig. 5.

Lontrol goire
Valocity terms

201

G0+
o.o 0.0

0.0 300 a0 ) 10,0 20.0
Tima (s) Time {(s)

Hulty level input signol

o)
SV

20.0

oo 0.0
Tima (s)

Figure 3. [Estimated parameters from the non-linear recursive prediction error method and
multilevel input signal.
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Figure 5. The boundary layer thickness and the sliding surface.

5. Conclusion

Non-linear control is especially necessary for an underwater vehicle that can
move in several directions at the same time and has a large number of operating
points. Underwater vehicles have complicated strongly coupled and highly non-
linear dynamics. Uncertainty in the added mass and velocity dependent terms
reduce the performance and robustness. This paper has presented a non-linear self-
tuning control strategy based on a non-linear version of the recursive prediction
error method combined with robust trajectory control. As this non-linear estimation
algorithm decreases uncertainty in the model, this enables tighter control to be
achieved, which leads to higher performance, see Fig. 4. Robust performance and
stability is also improved especially as the uncertainty in the diagonal elements of
the mass matrix are reduced (Egeland (1987)).

A flexible vehicle configuration is allowed through a self-tuning control scheme.
Adding and removing different items of equipment such as television cameras and
manipulator arms radically alter the vehicle’s kinematic and hydrodynamic proper-
ties. Such unpredicted changes are easily dealt with by the self-tuning methodology.
A self-tuning methodology also alleviates expensive model tests like the planar
motion mechanism (PMM) test to determine the hydrodynamic coefficients. The
vehicle’s weight and equipment may be changed without requiring new model tests.
It is also possible to extend the theory to a complete adaptive control law. A more
complex model may also be used without producing too many problems with the
identifiability.
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