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A note on the bottom shear stress in oscillatory
planetary boundary layer flow
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A simple analytical theory is presented, which describes the motion in a turbu-
lent oscillatory planetary boundary layer near a rough seabed using a two-layer,
time-invariant eddy viscosity model. The bottom shear stress is outlined, and
comparison is made with Pingree and Griffiths’ (1974) measurements of turbulent
tidal planetary boundary layer flow on the continental shelf south-west of Lands
End, England.

1. Introduction

The vertical structure of the bottom boundary layer on continental shelves is
dominated by several interacting physical effects in the most widespread, complex
case. Among these effects are the earth’s rotation, tidal effects, stratification due to
salinity and temperature gradients and suspended sediments, internal friction in the
fluid and topographical effects.

One important feature of the vertical structure of the bottom boundary layer is
determined by the influence of planetary rotation on various types of flow such as
unsteady flow due to tidal effects, horizontally uniform flow, and unbounded and
unstratified flow. This idealized boundary layer flow may occur in the ocean away
from any coasts and in the region near the seabed where the internal friction in the
fluid is significant.

The details of the vertical structure of the current varies with the modelling of
the momentum flux in the boundary layer. Various types of models have been pre-
sented in Sverdrup (1927), Long (1981), Prandle (1982), Davies (1985) and King et al.
(1985) among others. Soulsby (1983) gives a review of bottom boundary layers of
shelf seas. Some of the idealized types of boundary layer situations were discussed
using an eddy viscosity model which varies linearly with the distance from the
bottom.

This paper presents an analytical theory which describes the fluid motion in a
turbulent oscillatory planetary boundary layer near a rough seabed. A two-layer,
time-invariant eddy viscosity model is used to model the shear stress. The eddy
viscosity in the inner layer increases quadratically with the distance from the
bottom. In the outer layer, the eddy viscosity is taken as a constant. The present
eddy viscosity model is a reasonable compromise between accuracy and simplicity
and has an advantage over the linear profile that there is one disposable constant
which enables the model to be adjusted to the data. The choice of this constant
determines the magnitude of the eddy viscosity in the outer layer, as well as the
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height of the overlap point. The bottom shear stress is presented and a comparison
is made with measurements of turbulent tidal planetary boundary layer flow on the
continental shelf south-west of Lands End, England reported by Pingree and Grif-
fiths (1974). The estimated bottom shear stress from these measurements agrees very
well with the predictions made by our simple eddy viscosity model.

It should be noted that the present theory is valid for current without any influ-
ence of wave action. Application of this theory to time-dependent currents induced
by wind stress will therefore be restricted to situations when no waves are present.
However, Jenkins (1987) has most recently presented a theory for time-dependent
currents induced by a variable wind stress and wave field in deep water away from
coastal boundaries.

2. The oscillatory planetary boundary layer model

When studying first-order marine boundary layer problems it is common to
neglect vertical components of velocity, convective acceleration terms and density
effects. The time-dependent equations of motion along the horizontal orthogonal
axes x and y (east and north, respectively, in the northern hemisphere) can be com-
bined and expressed in complex notation by (Soulsby 1983).

i - _ i 1
+ifR gS+p 1

where i = (—1)/? and the following complex notation has been introduced for the
velocity, the water surface slope and the frictional shear stress, respectively,

R=U+iV 2)
_% .

S_6x+'ay (3)

T =1y, +1i1, (4

where z is the vertical axis measured upwards in a positive direction from the
seabed, U and V are velocities along x and y, g is the acceleration of gravity, { is the
water surface elevation, p is the density of the fluid, z,, and t,, are the x- and
y-components of the frictional shear stress. f= 2Q sin ¢ is the Coriolis parameter,
where Q is the Earth’s angular frequency of rotation and ¢ the latitude. The flow is
driven by the horizontal pressure gradient due to the horizontal time-varying water
surface slope.

On the seabed the velocity is zero and outside the boundary layer the frictional
shear stress is negligible. Thus the boundary conditions are given by

R=0 at z=12z,4
&)
R—+R, for z— o0
where z, is the seabed roughness length and R, is the free stream velocity outside
the boundary layer.
For harmonic time-dependent oscillations with angular frequency w, the
complex velocity in Eqn. (2) can be written as (Soulsby 1983)

R =R, exp (iwt) + R_ exp (—iwr) (6)
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where
R, =|R,|exp (ipr,) = 3[(ay + by) + ilay — by)] (7
R_ =|R_|exp (ipg.) = 4[(ay — by) +i(ay + by)] ®
and
ay = Ug cos ¢y, by = Ug sin ¢y 9
ay =Vocos ¢y, by =V,sin ¢y (10)

Here Uy, V, and ¢y, ¢y are the amplitudes and phases of U and V, respectively.
The velocity has been divided into anticlockwise (Eqn. (7)) and clockwise (Eqn. (8))
rotations. R, represents a velocity vector with magnitude | R, | and phase ¢g,
rotating anticlockwise with frequency w, when viewed from above. R_ represents a
velocity vector with magnitude |R_ | and phase ¢g_, this rotates clockwise with
frequency w. Thus the combination of the two rotations in Eqn. (6) represents a
velocity vector which describes an cllipse, see Fig. 1. Here the maximum and
minimum currents each correspond to the semi-major and semi-minor axes of the
ellipse, and are given by

|Rlmax = |R4 1+ R_| (11)

| Rlin = | Ry | — | R_| (12)
respectively. The time phase of maximum current is given by

0 = (i), = 22— 0x: > On: (13)

while the direction of the maximum current (the orientation of the semi-major axis
of the ellipse) relative to the x-axis is given by

Pr, + P
2

Similarly, the water surface slope (S) and the frictional shear stress (T) can be
divided into anticlockwise (S, T.) and clockwise (S_, 7_) rotating components in
the same manner as the velocity. By introducing this notation, Eqn. (1) can be

@ = (13)
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Figure 1. Current ellipse components: (g) anticlockwise component; (b) clockwise com-
ponent; (c) resultant ellipse (after Prandle 1982).
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separated into independent anticlockwise and clockwise components. Outside the
boundary layer the frictionless current is given by

igS
) (15)
R = _195-
o — w _f
The frictional shear stress will be modelled as
R
T, = pe, a;
(16)
R _
T-=pe- %o

where the kinematic eddy viscosities e, and e_ associated with the anticlockwise
and clockwise rotations, respectively, are assumed to be the same in both horizontal
directions. ¢, and &_ will be discussed below. By introducing this notation and the

defect velocities
Rjy =Ry — R4
(17
Rd— = R_ —_ RUJ“

Equation (1) can be separated into independent anticlockwise and clockwise com-
ponents (since R, and R, _ are independent of z) given by

i} 2R .
‘—a;(s\, a;’*)— ilw +f)Ryy =0 (18)
a OR,. .
%2 (e_ 2z )+1(w —f)R,_ =0 (19)
subject to the boundary conditions
Ry, =—R_, at z=z (20)
R,_=—R,_ at z=1zg 21
and
Ry;,,R,_ -0 for z—w (22)
The flow is assumed to be in the rough turbulent regime, that is (Soulsby 1983)
k
m = > 165 (23)

In the roughness Reynolds number, u.,, k/v, v is the coefficient of kinematic viscosity
of the fluid, k is the Nikuradse’s equivalent sand roughness, that is, the characteristic
dimension of the physical roughness of the seabed, and u.,, is the maximum friction
velocity on the seabed defined by

T 1/2 Tiz + TI l.,.f_z 1/2
Ueyy = ( Ormu) - [( E)z—zom“ (24]
P P
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where Topa =T, -,/ i the magnitude of the maximum shear stress on the
seabed. In the ocean k may be very different than the local physical roughness
would suggest. (23) is valid provided that the height of the roughness elements
replaces k if the seabed is not flat (see Soulsby (1983) for a closer discussion).
Soulsby (1983) gives a detailed discussion about how k is determined for various
seabed conditions.

When the flow is assumed to be in the rough turbulent regime the seabed rough-
ness elements are higher than in the (hypothetical) viscous sublayer. Since the eddy
viscosity is of greater magnitude than the molecular viscosity close to the seabed,
the shear stress due to the molecular viscosity has been neglected in the equations of
motion.

For rough turbulent flow z, = k/30, and the boundary condition on the seabed
is taken analogously to be that used for steady, unidirectional rough, fully turbulent
flow based on laboratory experiments (Schlichting 1979).

In this study the following two-layer, time-invariant eddy viscosity model is pro-
posed (which was originally used to model rough turbulent wave boundary layers in
Myrhaug (1982))

€4 l l Zz 2
== =_ < 25
Ktin 05 2 2(51 1) for z<0, @3)
_fx 1
6, "2 for z>6, (26)

where x is von Karman’s constant, é, and é_ are the distances from the seabed
where the overlap takes place. Note that 8, and §_ in this context are overlap
heights and that the boundary layer thicknesses will be greater than 6, and é_. The
indexes i and o denote the inner and outer boundary layers, respectively. A Taylor
expansion of (25) for small z/8, reduces to g = xu.,, z, which automatically gives the
correct logarithmic profile near the seabed. Different values are assigned to von
Karman’s constant depending on the problem which is under consideration. In
laboratory experiments xk = 0-40 or 0-41 is generally used, while atmospheric
workers often opt for k = 0-35 (Soulsby 1983). In this study x = 0-40 has been selec-
ted, &, is taken to be

Unpy

o+f’

since u.,,f(w + f) are characteristic lengths of the thicknesses of the boundary layer.
The justification for using the factor C = 0-05 in (27) is obtained from comparisons
of model predictions and the experimental results from measurements of the current
structure in a time-independent boundary layer under drifting pack ice (reported by
McPhee and Smith (1976), see Myrhaug (1987)). This C-value will also be used here.
The choice of C determines the magnitude of the eddy viscosity in the outer layer, as
well as the height of the overlap point. The proposed model for ¢, and £_ seems to
have a reasonably realistic behaviour. Both €, and ¢ . reach a maximum at z =6,
and z = §_ , respectively, and these values are kept constant throughout the bound-
ary layer. Even more realistic behaviour would be obtained by letting &, and &_
decrease to zero as z — oo, as was done in the Businger and Arya (1974) and Long
(1981) models. Businger and Arya (1974) used the following eddy viscosity model:
& = K.,z exp (—z/h), where h is the boundary layer scale height. This model was

51=C

C =005 (27
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suggested for a steady planetary boundary layer and was later expanded upon by
Long (1981) to cover unsteady flow. Soulsby (1983) has discussed a solution based
on the eddy viscosity distribution: & = ku.,,z. However, the present eddy viscosity
model seems to be a reasonable compromise between accuracy and simplicity and
has the benefit over the linear profile of having one disposable constant which
allows the model to be adjusted to the data. Simple eddy viscosity models have
often proved capable of predicting the overall structure of measured current profiles
reasonably well. More refined turbulence modelling using higher-order closure
models is necessary to obtain a better prediction of the detailed turbulent structure.
However, in order to produce better modelling of turbulence one should also have
access to high-quality data from detailed measurements of the turbulent structure as
well as the mean fluid velocities in idealized neutrally stable boundary layer flow.
The solutions of Eqgns. (18) and (19) with the same eddy viscosity model as in (25)
and (26), and subject to the boundary conditions in (20}22) were given in a differ-
ent context in Myrhaug (1982) (see also Myrhaug, 1987), consequently the details
will not be repeated here. The maximum friction velocity on the seabed is given by

Uy = F{(1 — E3 Nt + o+ tiam) - R+(Eo 4 teg)]*?
+ (1= E )Mo ) - X (b0 3 we)]'?} (28)

where 7, denotes the complex conjugate of y,, which is given in the Appendix
together with &,, . Equation (28) is an implicit equation for the determination of
Uy, . For a given seabed roughness length, free stream current velocity, frequency of
oscillation and the Coriolis parameter, u.,, can be determined from Eqn. (28) by
iteration.

3. Comparison with measurements

Our results will now be compared with the measurements made on the continen-
tal shelf south-west of Lands End, England reported by Pingree and Griffiths (1974).
These measurements were taken under completely neutral conditions well away
from the influence of local coastlines. The current metres were moored in water
depths of 180 m more than 200 km from the mainland. For mooring no. 1 the
measurements were made at 3-5, 7-5, 33-5 and 98 m above the bottom. The semi-
diurnal frequency of oscillation and the Coriolis parameter were w = 0-000143 rad/s
and f= 0000108 rad/s, respectively. The free stream amplitudes of anticlockwise
and clockwise motion were | R, | =9-9 cm/s and | R, _ | = 35-2 cmy/s, respectively,
33-5 m above the bottom. The logarithmic boundary layer flow model was matched
to the data for the lowest 33-5 m and the logarithmic flow model friction velocity
(u,) and roughness (z,) parameters were determined. For the clockwise component
the following parameters were found: u,_ = 1-2 cm/s and z, = 0-03 cm (with von
Karman’s constant ¥ = 0-4). The friction velocity associated with the anticlockwise
motion was u,, =03 cm/s. Thus the maximum friction velocity u., =u,.,
+ u, =15 cm/s. The assumed values of |[R__|, |R, _|, w, fand z, give u.,, =
1.47 cm/s according to Egn. (28), which appears to be in very good agreement with
the estimate from the measurements. In this case u.,, k/v is about 135, i.e. the flow is
in the transitional smooth to rough turbulent flow regime. Since this is fairly close
the rough turbulent regime according to (23), our theoretical results are taken to be
valid.
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4. Conclusions

This paper has presented an analytical theory describing the fluid motion in a
turbulent oscillatory planetary boundary layer near a rough seabed. A two-layer
time-invariant eddy viscosity is used to model the shear stress. The present eddy
viscosity model is a reasonable compromise between accuracy and simplicity and
offers one disposable constant which can determine the magnitude of the eddy vis-
cosity in the outer layer, as well as the height of the overlap point. This permits the
model to be adjusted to the data. The bottom shear stress is presented and a com-
parison is made with measurements of turbulent tidal planetary boundary layer flow
on the continental shelf off the south-west of England, reported by Pingree and
Griffiths (1974). The estimated bottom shear stress from these measurements agrees
very well with the prediction made by our simple eddy viscosity model.
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Appendix
¥+ is a complex quantity with the dimension of velocity given by
(ps —cos 24 MP; (E1) — Py, (—E4)
(py —cos Ay MP; (Eos) + Py (—&o4)

11(61; “‘m) = ‘Roo:l:

where

AP, () Iy +1
dx  x2-—1

P;.(x) = [Pi,+1(x) — xP;(x)]
P, () is the Legendre function of the first kind given in terms of the normalized
variables

Zg

z

—1
A4 is given by
Ai=-‘z-{l—a)¢i§

where
o= (,}'(! + (l + lﬁﬂZ)UZ»HZ

P 1S given by

(1 £ i)0s(cos Agm—1)+(cos Ay m+ 1)gy
n(1 6, +q;
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where

(220)"
Ny =\ s

Klhoy 0 3

nad, =n_8_=/(C/x)

g A (L A\ [
9 =43 A% sin ltn[l'( 2)F(2 2

where I is the Gamma-function.
It is seen that A and p are both constants which only depend on C/x.
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