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Multivariable adaptive controlt
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In recent years there has been an extensive interest in adaptive and self-tuning
controllers, and there is a vast literature on various adaptive algorithms. The
purpose of the present paper is to review some common approaches for multi-
variable adaptive control. The presentation concentrates on procedures which
are based on stochastic controller design methods, but some close connections
with other design techniques are also indicated.

1. Introduction

Adaptive and self-tuning controllers have been proposed as a means for tuning
digital controllers for industrial processes. The idea is to use on-line identification
in combination with a controller design method. The procedure is applied on-line to
recompute the controller parameters at each samping time using the identified model.
In practice such a procedure is useful for systems with slowly time-varying parameters
for keeping the controller properly tuned when the process dynamics change. The
method can also be applied to time-invariant systems, for which manual tuning may
be difficult. In this case an adaptive controller can first be used for tuning the con-
troller parameters, and then be removed after the parameters have converged to
proper values.

The present interest in self-tuning controllers was initiated by the work of Astrom
and Wittenmark (1973), who applied recursive least squares estimation and a mini-
mum variance strategy to obtain a self-tuning minimum variance regulator. Similar
approaches had previously been proposed by Kalman (1958) and Peterka (1970).
There is presently a vast literature on adaptive and self-tuning controllers obtained by
combining various on-line identification methods and different controller design
procedures. Good surveys of various areas in the field are available, see for example
Wittenmark (1975), Astrom et al. (1977), Astrém (1983), Landau (1979), and the
books edited by Narendra and Monopoli (1980) and Harris and Billings (1981).

Stochastic control problems form one area of process control problems for which
the adaptive control methods have proved useful. The original self-tuning regulator of
Astrém and Wittenmark (1973), which was designed to achieve minimum output
variance, has been successfully applied to a number of industrial processes (Astrém
et al. 1977). Adaptive controllers have also been designed for more general stochastic
control problems (Astrom et al. 1977).

It would seem that in practice adaptive controllers could be particularly useful for
multivariable plants with many interacting loops, as it is difficult to use manual
tuning in such cases. It also requires sophisticated and time-consuming off-line
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experiments to determine a process model, on which the controller design could be
based. A number of multivariable adaptive controllers have been considered in the
literature (for example Peterka and Astrém 1973, Borisson 1975, 1979, Koivo 1980,
Keviczky and Kumar 1981). Very few applications have been reported, however.
The purpose of the present paper is to review procedures for multivariable adaptive
control, which seem promising for practical applications. The discussion is restricted
to methods based on stochastic controller design. The primary control criterion is
here taken to control the system in such a way that the input and output variances
are as small as possible when the disturbances which affect the system are described
as stochastic processes. An important class of industrial quality control problems
can be formulated in this way (Astrém 1970, 1978, Mékild, Westerlund and Toivonen
1984). The generality of the stochastic approach considered here is further increased
by the fact that many common design problems, such as reference signal tracking and
pole-placement design, are conveniently handled in a stochastic framework.

The purpose here is not to attempt to give a complete survey of various techniques
for multivariable stochastic adaptive control. Instead the approach taken is to
consider the basic procedures and to indicate their applicability. Useful modifications
of the basic algorithms are also considered. The structure of the paper is as follows.
The basic principles of the stochastic adaptive control problem are considered in
§2. In § 3 adaptive controllers based on linear quadratic gaussian design are con-
sidered. In these algorithms a Riccati equation is solved on-line. Some possibilities
to reduce the on-line computing requirements are discussed. The problem of selecting
the design weights in the quadratic loss function properly to correspond to a well-
defined design criterion is also considered, and an algorithm for adapting the weights
on-line is described. This is a particularly important problem in the multivariable
case as it may be difficult to tune the weights manually in such a way that the
variances of all variables are jointly acceptable.

In linear quadratic gaussian design it is straightforward to take the uncertainty
of the parameter estimates into account by solving an optimal control problem for a
system with uncertain parameters. This results in a cautious adaptive controller
(Wittenmark 1975). Peterka and Astrém (1973) have given an algorithm of this type
using a square-root implementation of the least squares method for parameter
estimation. In § 3 the equations are given which are obtained when the commonly
used recursive least squares equations with exponential forgetting are applied.

In §4 adaptive minimum variance control of stably invertible systems is con-
sidered. The basic multivariable algorithm was given by Borisson (1975, 1979) for
systems with an equal number of inputs and outputs, and with a restrictive condition
on the system time delays. For systems where the number of inputs exceeds the number
of outputs the minimum variance strategy is in general not uniquely defined. This
case can, for example, be handled by determining the strategy which gives minimum
output variance with the least input energy (Goodwin, McInnis and Wang 1982).
The case when the system has arbitrary but known time delays has been discussed in
Goodwin and Dugard (1983). A modification of the approach is considered in § 4.

In § 5 a modification of the adaptive minimum variance controller is considered,
which is based on a generalized single-step loss function. The approach was originally
proposed in Clarke and Gawthrop (1975, 1979) for single-input single-output systems,
and has been generalized to the multivariable case in Koivo (1980) and Keviczky and
Kumar (1981). These approaches are restricted to systems with an equal number of
inputs and outputs. A convenient generalization of the method to systems having an
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arbitrary number of inputs and outputs was described and analysed in Toivonen
(1983 c), and this algorithm is considered in § 5.

There are many useful modifications of the methods based on minimum variance
control and generalized single-step optimal control. For example, it is straightforward
to include reference signal tracking. In this way the methods can be related to model
reference adaptive control. It is also possible to select the single-step loss function in
such a way that the dynamic behaviour of the closed-loop system is specified. These
issues are discussed in §§ 4 and 3.

Simulated examples which illustrate some of the adaptive algorithms are given in

§ 6.

2. Stochastic adaptive control
2.1. System description
Consider a linear sampled stochastic system described by

x(2+1)= Ax(t)+ Bu(t)+w(r) }
W) =Cx(t)+ (1)

where x is the n-dimensional state vector, u is the p-dimensional input, y is the
r-dimensional output, and {w(¢)} and {v(f)} are gaussian zero mean white noise
sequences. The matrices A, B and C and the noise covariances are assumed constant
or slowly time-varying.

From optimal filtering theory it follows that the stochastic process {3(¢)} has the
alternative representation (Astrém 1970)

R(t+1)=Ax(t)+ Bu(t)+ Ke(t) }
y(0)=Ci(t)+e(r)

where ()= E[x(¢)|y(z—1), y(t—2), ..., u(t—1), u(1—2), ...] is the state estimate, K
is the steady-state Kalman filter gain, and {e(r)} is a gaussian.white noise sequence of
prediction errors with zero mean value and covariance R,.

An input-output description of eqn. (2.2) is given by the vector difference equation

Alg= W(0)=Blg~")u(t —L— 1)+ Clg~")e(t) (2.3)

@1

2.2)

where ¢~ ' is the backwards shift operator (g~ 'y(t)=p(¢—1) etc.), L represents a time
delay, and A(-) (r xr), B(-) (rx p) and C(-) (r x r) are matrix polynomials given by

A@)=1+Ayz+ ...+ A"
B(z)=Bo+ Byz+...+B,,_;z"! (2.4)
C(z)=I+C,z4 ...+ C,z"

where m is the observability index of the pair (C, 4). The polynomials 4A(-), B(-)

and C(-) are in general not unique. For obtaining the input—output representation
(2.3) from the representation (2.2), see Furuta and Paquet (1975).
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2.2 The stochastic controller design problem

The basic control problem considered here is to control the system described by
any of the alternative representations (2.1) to (2.3) against the stochastic disturbances
in such a way that the variances of the outputs y;, i=1, ..., r, and the inputs u,,
j=1, ..., p are as small as possible. This control problem has been studied extensively
in the literature (Athans 1971, MacGregor 1973), and it has been shown thatitis a
useful design method in many industrial control problems (Astrdm 1970, 1978,
Mikild, Westerlund and Toivonen 1984).

The optimal control laws are obtained by minimizing quadratic loss functions of
the form

V= lim EX T 50700 +u(t)" Q) @5)
N—sw =1

where O, and Q, are positive (semi)definite weight matrices to be chosen. This is the
well known linear quadratic gaussian control problem. The controllers obtained by
minimizing eqn. (2.5) have the property that it is not possible to reduce any of the
closed-loop variances of the outputs y, or the inputs z; by changing the control law,
without simultaneously increasing the variance of at least one other output or input.
The loss function (2.5) thus gives a convenient parametrization of the optimal control
strategies in terms of the weight matrices Q, and Q,. The selection of Q, and Q, is
made in accordance with the designer’s preference ordering to give a satisfactory
combination of closed-loop variances.

For a multivariable system it may not be easy to find proper values of the design
weights by a simple trial and error procedure, and systematic methods for selecting
the weights have therefore been discussed (Athans 1971, Makili, Westerlund and
Toivonen 1984).

2.3. Adaptive controllers

An adaptive controller for the control problem described in § 2.2. can be designed
by combining an on-line parameter estimator for estimating the parameters of egn.
(2.3) and a part for computing the optimal control law for the identified model
(Astrém er al. 1977). The adaptive controllers considered here can be described
by the following general algorithm.

Algorithm 2.1. Adaptive controller

Step 1. Parameter estimation. At time instant ¢, estimate the parameters of the
system (2.3) by an on-line identification method based on the measured outputs and
the inputs up to time z.

Step 2. Control law computation. Compute the optimal control strategy for the
model obtained in step I, and determine the corresponding optimal control signal
u°(r).

Step 3. Compute the new input
u(t)=u(t) +(1) (2.6)
where 5(¢) is an input excitation signal, e.g. a PRBS-signal or white noise.

Step 4. Determine the input applied to the process at time # as
u(t)=sat (u(t); B, «) )
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where B; <e; and
B if z<B,
sat; (z; B, @)=<z;, if zZE[By, «] (2.8)
oy, If z;>e

Repear from step | at each sampling instant.

The adaptive algorithms have been classified into explicit and implicit algorithms
depending on how the identification in step 1 is organized. In the explicit methods
the parameters of the system (2.3) are estimated explicitly. In the implicit procedures
the system is parametrized in such a way that the controller parameters are obtained
from the estimated parameters in a trivial way. There are many on-line identification
procedures that can be used in the algorithm, and these will be discussed briefly
below.

Step 2 of Algorithm 2.1 consists of a computation of the optimal control strategy
which minimizes a quadratic loss function, in accordance with the stochastic controller
design problem considered in §2.2. In order to reduce the computational effort a
finite-time loss function is often used instead of (2.5). In particular, if N=L+1,
where L is the system time delay, cf. eqn. (2.3), it is possible to parameterize the model
in such a way that the design calculations are trivial. It is also possible to use the
parameter uncertainties in the control signal computation in various ways (Witten-
mark 1975). Various algorithms which are obtained are discussed in § 3 to 5.

The excitation signal #(¢) in step 3 is added to the input in order to preserve
parameter identifiably in closed-loop operation (Gustavsson, Ljung and S&derstrom
1977). It can also be used when the parameter estimates are poor in order to obtain
better estimates.

Step 4 is introduced in order to avoid unacceptably large inputs, for example
reflecting the saturation effects which are always present in practice. It has also been
proposed that linear inputs constraints can be used as design variables offering a
method to reduce control signal variations to an appropriate level (Makild 1982).

Parameter estimation

There are many on-line identification methods which can be used in the adaptive
algorithms. Extensive surveys of the various techniques can be found in Séderstrém,
Ljung and Gustavsson (1978) and Goodwin and Payne (1977). Only a brief summary
is given here.

A large class of on-line parameter estimators can be described by the recursive
equations

OT(r+ 1)=07T(1)+ K(t+ e(t + 1; O(r))" (2.9 a)

K(t+ 1)=P)O)(Me+ 1)+ ()" P(t)y(1)) (2.9b)
I P()J(OY()" P(2)

gL At+1) [P(')_ A+ 1)+ l;-(r)TP(t)-ﬁ(r)] o)

(t+1; O@)=p(t+ 1) —O()e(t) (2.94d)
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where

O@)=[A(2), ... Bol2), ..., Co(2), ...] (2.10)
is the estimate of the parameters in (2.4) and
AD=[-HO7, ..., ut—L)", ..., (t; O —1))", ...]" (2.11)

An alternative to the recursive equation (2.9) is to use numerically stable square root
methods (Bierman 1977, Peterka 1975), in which the square root of the matrix P(7)
is propagated rather than P(t).

In the estimation procedure, estimates of the prediction errors e(f) are needed for
estimating the C-parameters of (2.3). In the recursive algorithm (2.9), the prediction
errors are approximated by recursive evaluation of (2.9 d), using the current para-
meter estimate at each step.

Various estimation procedures correspond to different choices of the vector
(). In the recursive extended least square method y(f)= ¢(t) is used. In the recursive
maximum likelihood method (Soderstrdm, Ljung and Gustavsson 1978), (r) is
obtained by filtering ¢(f) according to

P(t)=C," (g~ (1) (2.12)

where C,(¢g~") is formed from the estimated C-parameters at time 1.
In the case when the matrix polynomial C(g~!)=1, (2.9) reduces to the recursive
least squares method. In this case

O@)=[4(t), .... By(), ...] (2.13a)
Wt)=pt)=[—y(O)", ..., ult=L)", ...]" (2.13 b)

This method is particularly convenient since the recursive algorithm generates the
optimal estimates which could be obtained by the corresponding off-line method.

In (2.9) X(-) is an exponential weighting factor which makes it possible to track
slowly time-varying parameters. When A=1, all observations are weighted equally,
while A< 1 corresponds to exponential forgetting of past data. In practice it may be
useful to apply variable weighting factors, which adapt to changing disturbance levels
by retaining a constant amount of information in the estimator (Fortescue, Kershen-
baum and Ydstie 1981, Hagglund 1983 a, b).

In some applications it is of interest to consider methods based on stochastic
approximation. In these methods the estimates are obtained recursively from

OT(t+1)=07(t)+p(t+ Dy(t)e(t + 1; O(1))" (2.14)

where p(f) is a scalar, e.g. ¢/t or 1/tr P(f)~'. The modification reduces the computa-
tional effort considerably, but in return the convergence rate of the estimates is in
general slower than with the algorithm (2.9).

Convergence analysis

Simulations can give valuable insight into the behaviour of the adaptive algo-
rithms. It may, however, be difficult to make decisive conclusions about convergence
properties from simulations only. For example, it is difficult to determine the exact
convergence point of an algorithm, or to decide whether the algorithm actually
converges or oscillates around a point (Ljung and Wittenmark 1974). Theoretical
analysis can tken give valuable insight in the study of adaptive algorithms.
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The closed-loop system obtained when controlling (2.3) by an adaptive algorithm
as Algorithm 2.1 is non-linear, time-varying and stochastic, which makes it quite
difficult to analyse. Some results are available, however, for the case when the system
(2.3) is time-invariant. When the recursive parameter estimator gives convergence to
the true parameters (which is, e.g. the case for the least squares method), then it
follows that the possible convergence points of the algorithm give the required control
law, if the system order is not underestimated (Astrom et al. 1977). This does not
imply that the closed-loop under adaptive control is stable, however. There are also
commonly used identification methods, such as the extended least squares method,
which are known not to converge to the true parameters for all systems (Ljung 1977 a,
Soderstrom, Ljung and Gustavsson 1978). A further complication arises as many
adaptive schemes use a reparametrization of (2.3) in order to make the design calcula-
tions simple,

Goodwin, Ramadge and Caines (1981) apply martingale theory to study an
algorithm based on a modified stochastic approximation identification procedure and
a minimum variance design. It was shown that subject to a positive realness condition
the inputs and outputs are mean square bounded, and that the algorithm gives
convergence to the optimal minimum variance controller.

Ljung (1977 b) has developed a general procedure for analysing recursive sto-
chastic algorithms, which is useful in the study of the adaptive controllers considered
here (Astrém et al. 1977, Ljung 1980). Assume that A(f)—>1 in the recursive scheme
(2.9). Then Ljung (1977 b) has shown that the ordinary differential equation

ai O7(r)=R(+)~h(©)

: (2.15)
o R(7)=G(®) - R(7)
T
is associated with the asymptotic behaviour of (2.9) as r—>oc0. Here
l N
WO®)= lim — ¥ Ed(s; O)(t; O)F
Noo NV (54
(2.16)

G(®)= lim rlf Ej EQ(1: Op(t; 0)T
=1

Nt

where P(f; ©) and &(¢; ©) are the stochastic processes obtained for the closed-loop
system when the parameter matrix @, cf. eqns. (2.10) and (2.13 a), which is used in
Algorithm 2.1, is constant.

Equation (2.15) can be used to study the asymptotic behaviour of the adaptive
algorithm. A restriction of this approach is that stability of the closed-loop system
must be assumed for the limits (2.16) to exist. Equation (2.15) can be analysed only
in simple cases (Ljung 1977 a, 1980). A multivariable adaptive algorithm is analysed
using (2.15) in Toivonen (1983 c¢). When the analysis of (2.15) is infeasible, the results
can be used heuristically by solving the ordinary differential equation (2.15) numeri-
cally (Astrém er al. 1977, Ljung 1980). In this way valuable information of the
asymptotic behaviour of the adaptive controller can be gained (Astrém and Witten-
mark 1974, Ljung and Wittenmark 1974, Toivonen 1983 a).
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3. Adaptive controllers based on linear quadratic gaussian design

In this section some specific adaptive algbrithms based on linear quadratic
gaussian design are considered. In this approach the parameters of the system (2.3)
are estimated recursively, and the control law is then determined by solving a Riccati
equation. Algorithms of this form have been considered for example by Peterka and
Astrom (1973), Lam (1980), Astrom and Zhao-Ying (1982).

Consider the model

Alg=" (@)= Blg= " yult—1)+C(g)e(t) @.1

which corresponds to (2.3) with L=0. This implies no restriction since the leading
mairix coefficients of the B-polynomial can always be set equal to zero. A possible,
non-minimal state-space representation of (3.1) is

5(t+1)=A%(t)+ Bult)+ Ke(t + 1) (3.2a)
y()=[—10 ...)z(t) (3.2b)

with
=[-y(O",—y=1)", ..., u@t—=1)7, ..., (t)", ...]" (3.3)

and

F Bo
{3} 4
where

F= [“fl’ ffzs snes BI’ ey Cls =] (35)

and the matrices M, N and K consist of zeros and ones in positions which follow from
the structure (3.2), (3.3).

The basic adaptive algorithm based on linear quadratic gaussian control takes
the following form.

Algorithm 3.1. Linear quadratic gaussian control

Step 1. Estimate the parameters of (3.1) by an on-line parameter estimation
method to obtain the estimates 4;, B;, ;.

Step 2. Determine the control law which minimizes the loss function (2.5) for the
model (3.1), i.e.

u(t)=—L,2(1) (3.6)
where
L,=(B"S,B+Q,) 'B"S A (3.7a)
S,=A7S,A— ATS,B(B"S,B+ Q,) 'B"S, A+ Q, (3.7b)
0, 0
0.= (3.7¢)
0 0

Steps 3 and 4 as in Algorithm 2.1.

Repeat from step 1 at each sampling instant.
There are many possible modifications of Algorithm 3.1. One possibility is to use
a state space representation which is of lower order than (3.2), (3.3). In that case the
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state vector will depend explicitly on the estimated parameters 4;, B,, C,. Some other
modification will be discussed below.

The Riccati equation (3.7) is conveniently solved iteratively, starting the iteration
using the Riccati matrix S,_, from the previous sampling period. In order to reduce
the computational effort required, it has been proposed that only one iteration of
(3.7) is performed at each sampling instant (Bartolini ef al. 1982), i.e.

S,=A"S,_A— A'S,_B(B*S,_,B+ 0,)"1B7S, . A+ Oy (3.8)

This procedure can be expected to work well only if the estimates do not vary too
much. When the estimates change from step to step, (3.8) may not be able to keep
track of these changes, and after a while the control law (3.6) may give poor control
performance, even in cases when the estimated parameters are quite acceptable all the
time. This phenomenon has been observed in simulations. In these cases the number
of iterations can be increased, and it is straightforward to include a test which
controls the number of iterations, for example by requiring that ||S®+h_g® |/
[S® ]| <8, where S*™ denotes the Riccati matrix at the kth iteration and & is a small
positive scalar.

Use of least squares models

The least squares method is a convenient estimation procedure, and it is therefore
often used in practice. It is worth studying to what extent it is possible to base the
adaptive algorithm on a least squares model,

Alg=)(0)=B(g= "yt~ 1)+<(1) (3.9)

even in cases, when the system is appropriately described by (2.3) with C(g~")#1.
Such an approach can be expected to work well, since (3.9) can be considered as an
approximation to (2.3) obtained by approximating the inverse C(g~!)~! by a matrix
polynomial of finite order. In general, high orders for A(-) and B(-) in (3.9) may
have to be used in order to obtain a good approximation, however.

For the adaptive algorithms operating in closed-loop there are, however, some
experimental results showing that use of the least squares model (3.9) may give quite
good performance even with low order models (Astrom and Wittenmark 1974,
Toivonen 1981). Some insight can be obtained by the following heuristic reasoning.
When the system (3.1) with the state space representation (3.2) is controlled by a
time-invariant control law of the form (3.6), the state vector £(¢) can be constructed
in terms of u: s and y: s only using (3.2) and (3.6), eliminating the residuals in (3.2) by
the relation

e(t+1)=y(t+ 1)—Fz(t)—Bou(t)

Thus, when using a constant feedback law, as eqn. (3.6), the output of the closed-loop
system is correctly predicted by a least squares model of the form (3.9), which holds
only for the given closed-loop conditions. The order of the least squares model is
determined by the observability index of the pair (L, A— KF). For these reasons an
adaptive controller based on a least squares model may converge to the required
strategy when the design is based on a single step loss function, see § 5. Numerical
examples have shown that good results can also be obtained in cases when the design
is based on a multistep loss function. Several numerical examples are presented in
Astrém and Wittenmark ( 1974) for minimum variance control of non-minimum
phase plants and in Toivonen (1981) for the variance constrained optimal control
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problem (3.10) (see below). It was found that an adaptive algorithm based on (3.9),
when applied to a system described by (2.3), in many cases converged to a control law
giving only a few percent larger values for the loss function than the optimal strategy.
In many cases the non-optimality of the algorithm could only be discovered by study-
ing the associated differential equation (2.15). An example is shown in § 6. In view
of these results the use of the least squares model (3.9) is clearly an interesting
possibility.

Selection of the weight matrices

In the loss function (2.5) the weight matrices Q, and Q, should be properly chosen
to achieve the desired closed-loop performance. The proper values for the weights
depend on the system dynamics, and in a truly adaptive procedure the weights should
therefore also be adjusted on-line. For single-input single-output systems the adjust-
ment can be done manually (Clarke and Gawthrop 1981, Astrém 1983), but in the
multivariable case with several inputs and outputs this may not always be easy. It is
therefore also of interest to study methods for tuning the design weights adaptively.
In Toivonen (1983 a, b) a procedure is considered where the control problem is
formulated as an optimal stochastic control problem with explicit variance restric-
tions. In this formulation, the solution is found to the constrained problem

N
Minimize ¥= lim E‘]ﬁ Y ¥OTQ(1)

Ne»oo =1

. (3.10)
1
subject to lim E— Y w(®)"Ru(t)<c?, i=1,....q

. N—sco N t=1

For unstable plants the cdnstraints ¢;> should be chosen so that the problem has a
solution. The formulation (3.10) in stochastic controller design has been applied
successfully to industrial process control (Westerlund 1980). The off-line design
procedure has been discussed extensively in Mikild, Westerlund and Toivonen
(1984). The design of an adaptive controller for the variance constrained optimal
control problem (3.10) results in a procedure for on-line adaptation of the weight
matrices in the quadratic loss function. This is seen by considering the Lagrangian
function of the constrained minimization problem (3.10),

1 N
Vi= lim E— ¥ y(O)TQ,p(1)+u(®)"Q.* u(t) (3.11)
N N£=I
where
q
0= ¥ AR, (3.12)
i=1
and ), (>0) are Lagrange multipliers. The necessary optimality conditions are
1 N
al( lim E— ¥ u(t)"R.—u(t)—c,z)=0. i=1, ..., q (3.13)
Now N (=

A two-phase adaptive algorithm for the variance constrained optimal control problem
(3.10) can now be obtained as follows (Toivonen 1983 a, b)

1. Apply an adaptive controller based on linear quadratic gaussian design for
minimizing the loss function ¥, eqn. (3.11), where the weight matrix Q,*
is given by (3.12) (Algorithm 3.1).
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2. At each sampling instant, adjust the Lagrange multipliers A; by applying the
Robbins—Monro stochastic approximation scheme to the eqns. (3.13):

At + 1) = A(t) +p A(O@(O) Ra(8) — ¢ D]e?, i=1,...,q (3.14)

where p, is a small positive scalar.

Cautious control

Algorithm 3.1 is a certainty equivalence adaptive controller (Wittenmark 1975),
i.c. the control signal is determined in step 2 as if the estimated parameters were the
correct ones. When the parameter estimates are poor the approach may not work
well because too much confidence is put on the current estimates. It could then be
useful to take the uncertainty of the parameter estimates into account in some way.
One way to achieve this is by cautious control (Wittenmark 1975). In this approach
the loss function

t+N
Vv=E [ ‘; YO Q)+ u(f)TQ..H(i)It] (3.15)

is minimized at each step under the assumption that future measurements are not used
for improving the current parameter estimates. The first control #°(¢) in the optimal
control sequence is then applied to the system. This procedure is repeated at each
sampling time. In the minimization of (3.15) the uncertainty of the current estimate
©(?) is taken into account. An optimal control problem for a system with uncertain
parameters (Astrdm 1977, Panossian and Leondes 1983) is thus solved at each
sampling time. The variances of the estimates ©(r) are obtained approximately from
the recursive estimator (2.9). This approach is not optimal, since the fact that the
control will influence future estimates and their accuracy is not taken into account.
In this approach the effect of parameter uncertainties is simply to make the con-
troller more cautious, since less confidence is put on the parameter estimates which are
available at each sampling instant.

Peterka and Astréom (1973) give a cautious controller, in which the least squares
procedure is used for parameter estimation. A square-root implementation of the least
square method was used. The corresponding algorithm obtained when using the
recursive least squares method of egns. (2.9), (2.13) has been considered in Toivonen
(1981). The procedure is a straightforward generalization of Algorithm 3.1.

In the method of least squares, the matrix P(r) of eqn. (2.9) is proportional to the
covariance of the estimates, and it can be shown (Peterka 1975, Toivonen 1981) that
for any known matrix §

E[(O(1)—©0)"S(0(1) - ©0)]=P(t) tr SR, (3.16)

where O, is the true parameter matrix, and R, is the covariance of the white noise e,
eqn. (2.3):
R.=Ee(t)e(t)™ (3.17)

In practice R, is not known, and it can be estimated. The maximum likelihood estimate
of R, is obtained recursively from (Peterka 1975)

y(t+ DR+ )= Mt + DAORL) +e(t+ 1: O@))e(t+1; O@)T/(Mt+1)
+@TP(t)e(1))] (3.18a)
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e+ 1)= M)+ | (3.18 b)

and ¢(r) is given by (2.13 b). These relations can now be used to obtain the following
algorithm for cautious control.

Algorithm 3.2, Cautious controller

Step 1. Estimate the parameters of (3.9) by the recursive least squares method
using (2.9), (3.18) to obtain ©(t), P(1), and R(t). Tt is convenient to reorder the
g-vector and to use

W) =¢(t)=[u(®)T, — ()T, —y(—1DT, ..., u(t— 17, ...]7 }
(3.19)

O()=[Bo, 4;, A3, ..., By, ...1"
instead of (2.13).

Step 2. Computation of cautious control law. Use the estimates and their
uncertainties for determining the control sequence which minimizes (3.15) under the
assumption that future measurements are not used for improving the current estimates.
This is an optimal control problem for a system with uncertain parameters, which can
be solved by dynamic programming (Astrom 1977). Introducing the result (3.16)
and the state space representation (3.2) gives the solution (Toivonen 1981)

uo(t)= — L(1)z(1) (3.20)
where
L(k)=[BTS(k + 1)B+ Pgg(t) tr (S, 1(k + DR(2))+ Q21 ' [B"S(k+1)4 |
+ Pye(t) tr (Sy1(k+ DR(1))]
S(k)=ATS(k+ DA+ Pee(1) tr (S;:(k+ DR(1)) L (3.21)
~[ATS(k + DB+ PyeT(t) tr (Sy,(k+ DR (1)) IL(K) + O,

S+ N)=0,, k=t+N—-1,..,t
where A and B are given by (3.4) and Q, by (3.7 ¢). The Riccati matrix S is partitioned

as
AT Sz |}
S=
S127 82,

et
r

and the matrix P(¢t) of eqn. (2.9) as (cf. (3.19))

[PBB(I) Pnr(f):l}f’
P()=
Pgr"(t) Prelt)

——
4
Steps 3 and 4 as in Algorithm 2.1.
Repeat from step 1 at each sampling instant.
A well known phenomenon in cautious control is the so-called turn-off (Witten-
mark 1975). This means that when the estimates are poor, the covariances will cause
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the control action to be cautious, and the control signal may become very small. As
the control signal fails to excite the system the estimates can become still worse in
the future. In this way the control may be turned off for some period of time, until the
noise excites the system in such a way that better estimates are obtained. This phe-
nomenon can be avoided in Algorithm 3.2 by applying the input excitation in step 3
when the estimates are poor.

4. Adaptive minimum variance control

A particularly simple adaptive controller can be designed for the case when the
criterion is to achieve minimum variance of the outputs, i.e. when Q,=0 in the loss
function (2.5). In this case there is a class of systems for which it is possible to para-
metrize the model in such a way that the design calculations are trivial. It is also
straightforward to include reference signal tracking and feedforward from measured
signals in this approach. The basic self-tuning minimum variance regulator for single-
input single-output systems was given in Astrém and Wittenmark (1973) and Witten-
mark (1973). A multivariable generalization has been given by Borisson (1975,
1979). Here the method is presented with some generalizations.

Consider a stochastic system described by

Alg™ " W()=B(g~ u(t—L—1)+D(g~"In(t—L— 1)+ C(g~" )e(r) @.1)

where n(t) is a known signal. It is assumed that the number r of outputs does not
exceed the number p of inputs, that rank B(0)=r, and that the system is stably
invertible. In the case when r=p the last condition implies that det B(z) should have all
zeros outside the unit disc (minimum phase assumption).

Now consider the loss function

N

Vyp= lim E-lﬁ D+ L4+1)y—y(t+L+ DO, (e +L+ D=3+ L+ 1)) (4.2)
N—»oo 1

=

where y,(-) is a reference signal to be tracked, and assumed known at least L+ 1
steps ahead. The control strategy which minimizes (4.2) for the system (4.1) is obtained
from the (L+ 1)-step predictive model (Borisson 1975, 1979)

y(t+L+1D)=Clg= ) [C(g~ (1) +F(g~")Blg~ () +F(g~)D(g~ " n(t)]
+Fg~Ye(t+L+1) (4.3)

where the matrix polynomials €(-), G(-), F(-) and F(-) are defined by the identities
C(z)=A(z)F(z)+ 2zt G(z), deg F(z)=L
F(2)G(z)= G(2)F(z), det F(z)=det F(z), F(0)=F(0)=1 4.5)
C(z) =F(2)A(z)+z**'G(z), det C(z)=det C(z)
Since the last term in (4.3) is uncorrelated with y(r), y(r—1), ..., u(t—1), ..., n(t),
n(t—1), ..., the strategy which minimizes (4.2) is obtained by setting the first expres-
sion in (4.3) equal to y(t+L+1), ie.
Flg=")Bg="yu(t)+ Glg~ " W) +F(g=)D(g~In(t)—Clg~ "t +L+1)=0 (4.6)

M.I.C. B
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The output of the closed-loop system is then
Y+ L+ 1) =y,t+L+1)+F(g~e(t+L+1) 4.7)

The minimum variance strategy‘is seen to be independent of the weight Q,. The
strategy (4.6) can be written compactly as

Bou(t)+ O¢(t)=y(t+L+1) {4.8)
where B,= B(0),

(=D, ..., ut=1)7, ..., ()", ..., y(1+L)", ...]"

and © consists of the matrix coefficients of the polynomials G(z), F(2)B(z)— B(0),
F(2)D(z) and I—C(2).

In the case when the number of inputs and outputs are equal, r=p, (4.6), or (4.8),
defines the minimum variance strategy uniquely:

upAt)=—Bo ™ '[O(t) —yt +L +)] 4.9)

In the case when the number of inputs exceeds the number of outputs, p>r, the
minimum variance strategy is not unique. The non-uniqueness can be exploited for
example by selecting the control signal which gives minimum output variance with
least control energy at each step (Goodwin, McInnis and Wang 1982), i.e. by solving

min u(1)"Pu(t) (P>0) subject to (4.8) (4.10)
which gives the control law
Uy (t) = —P~'Bo"(BoP~ ' Bo") ' [Og(t) —y 1+ L +1)] (4.11)

Another possibility is to determine the input which gives minimum output variance
with the smallest changes of the control signal, by solving

min [u(t)—u(t— 1)} Plu(t)—u(t—1)] (P>0) subject to (4.8) (4.12)
This gives the control law
() =u(t—1) =P~ ByT(BoP~'Bo") ' [O@(t) —y(t + L+ 1)+ Bou(t—1)] (4.13)

The structure of the minimum variance strategy (4.6) suggests that an adaptive
minimum variance controller can be designed by estimating the parameters of a
prediction model corresponding to (4.3), and setting the predicted output equal to the
reference value y,(t+L+1) (Astrom and Wittenmark 1973, Borisson 1975, 1979).
The following algorithm is obtained.

Algorithm 4.1. Minimum variance control (dim #>dim y)
Step 1. Estimate the parameters of the predictive model
Yt+L+1)=s(q™ )+ H(g~ )+~ WAt + L)+ 2(q~ " In(t)

+e(t+L+1)  (4.14)
by the method of least squares.

Step 2. Determine the control signal uy,,(t) from the minimum variance strategy
(g~ W) +Bq~ ) +€(g~ Wt +L)+D(g~In(t)=y(t+L+1)  (4.15)
This leads to (4.9), (4.11) or (4.13) depending on the situation.
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Steps 3 and 4 as in Algorithm 2.1.
Repeat from step | at each sampling instant.

Note that the reference signal y,(-) can be determined as the output from a refer-
ence model

ALg™ Wt +L+1)=B, (g™ " ult)

This relates Algorithm 4.1 with model reference adaptive control (Landau 1979).
The procedure is still limited to stably invertible systems.

Goodwin, Ramadge and Caines (1981) have applied martingale theory to establish
global convergence of a modified version of Algorithm 4.1, in which a modified
stochastic approximation procedure is used for parameter estimation. It is shown that,
provided a certain transfer function associated with the system (4.1) is strictly positive
real, the inputs and the outputs are mean square bounded, and the algorithm con-
verges to the minimum variance controller. A global convergence proof of Algorithm
4.1 with least squares estimation is not available. However, if it is assumed that the
signals remain bounded, the associated ordinary differential equation (2.15) can be
used to study the asymptotic behaviour of the algorithm. The results of Ljung (1978)
applied to Algorithm 4.1 show that convergence to the minimum variance strategy
(4.6) is obtained if the transfer function

Clg= ' -4
is strictly positive real, i.e. if the matrix
Re [C(exp (iw))~* + C(exp (iw))~T—1)
is strictly positive definite for all c.

Systems with arbitrary time delays

Algorithm 4.1 is restricted to the case when the matrix By, =B(0) has full rank.
This implies a restriction on the time delays of the system. It is, however, straight-
forward to handle systems with arbitrary but known time delays. Goodwin and
Dugard (1983) give a procedure which involves the system interactor matrix. Here a
modification of the method is given, which is more straightforward in the case when
there are different time delays at the inputs.

Let the system be given by the transfer function representation

W)=q~“H(g~Yu(t)+ N(g~e(t) (4.16)
where
-1
H(q‘l)=[g‘f-ﬂ“‘ b"(q_l)], a0)=1, b (0)#0, minL,;=0 (4.17)
a(g™')
Then there are two diagonal matrices
Dl(q)=d]ag (qkl) sy Gk")a mil'l kl=0 (4°18 ﬂ)
Dy(q)=diag (g™, ...,q'?), min/=0 (4.18 b)
such that
lim ¢D.(q9)H(g~")Dy(9)=K (4.19)
g='=0

is finite and has no zero rows or columns. It is assumed that the matrix K formed in
this way has full rank. Introduce

HA(g=)=D,(q@)H(g~")D,(q) (4.20)
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and the signals

H)=Dy(g)¥(1) (421 a)
(1) =g'mexD, (g~ u(t), lpax=max/; (4.21 b)

From (4.16) is now obtained
(Y=g~ F(g=")i(1)+ Dy(q~")N(g™)e(?) 4.22)

where [ =1+ 1,,,. Goodwin and Dugard (1983) show that using (4.22) a predictive
model analogus to (4.3) can be derived for the signal j(r), giving

FHe+L+1)=Clg=1)~ [#g~ WO+ B~ YN+ F(g~e(t+L+1) (4.23)

where #°(0) = K. A minimum variance strategy corresponding to (4.6) is now obtained
by setting the predicted 7(t+ L+ 1) equal to D,(g)y(t+L+1):

B(g~V)ii(t) + 2@~ () —Clg= D (gt +L+1) 4.24)

It is clear from (4.23) and (4.24) that Algorithm 4.1 can be generalized to systems
with arbitrary but known time delays by replacing the predictive model (4.14) of the
algorithm by

He+L+1)=s(g= ")) +B(g~ i)+ % (g~ WDy (@1 + L))+ 2(g~ " )n(r)
+e(t+L+1)  (4.25)

It is observed that when there are different delays in the outputs only, i.e. when
D,(g) =1, (4.23) corresponds to using different prediction times for the various outputs,
and (4.24) gives the optimal minimum variance strategy which minimizes (4.2).
Makild (1982) illustrates the situation in this case by a numerical example in which a self-
tuning algorithm based on (4.25) is used. When there are different delays at the inputs,
(4.21 b) corresponds to introducing additional time delays, since for the ith input
(1) =u(t + lpnax — I;), i.€., the signal i(7) is determined at time ¢ and applied to the
process at the later time #41,,,—/. This case has been considered in Tanttu and
Koivo (1983). In this case the approach is not optimal, since the fact that some of the
inputs affect the system outputs with a delay less than L is not exploited. The optimal
strategy is, however, much more complex, and requires the solution of a steady-state
Riccati equation. An alternative procedure for designing adaptive controllers for
systems with arbitrary time delays is the MUSMAR-algorithm (Menga and Mosca
1980), which is described in § 5. In that approach it is not required that the time
delays are known.

5. Adaptive algorithms based on single-step optimal control

Minimum variance control has the drawback that the strategy may generate
extensively large control signals (MacGregor 1973). Linear quadratic gaussian design
can then be used, but this results in more complex algorithms. A useful modification,
which preserves the computational simplicity of the approach based on minimum
variance control, is then obtained by basing the design on the generalized single-step
loss function (Clarke and Gawthrop 1975, 1979, Koivo 1980, Keviczky and Kumar
1981)

Vi=El(+L+ )=y, ¢+L+ )T, +L+ 1) —y(t+L+1))
+(Pg~ ()" QuP(g~ (D) |y(1), ..., u(?), ..., n(1), ...] (5.1}
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where P(g™") is a (matrix) polynomial, which can be chosen to affect the closed-loop
response.

Now consider a system described by (4.1). The predictive equation (4.3) gives the
control law which minimizes the single-step loss function (5.1) at each step as
(cf. Koivo 1980, Keviczky and Kumar 1981, Toivonen 1983 ¢)

Bo" Q,[4%q ™ Iv(t) +B%(g~ Iu(t)+D%(q~ In(t)]
+c(g™PO)TQuP(g~ u(t)— Bo™ Oye(g~"Yplt+L+1)=0 (5.2)

where
o(g~")=det E(g~")=det C(g~") )
2°g~")=adj [C(g")]1G(g~")

- (5.3)
#°(g")=adj [Cg~")IF(g")Bg™"). #°(0)=B(0)=B,

2°%g~")=adj [C(g~1D(g™")

In (5.2) it is meaningful to assume that B, has full rank, whereas the number of inputs
and outputs are arbitrary. Systems with arbitrary time delays can be treated as was
described in § 4, cf. eqn. (4.21).

The strategy (5.2) is not optimal for the problem considered in § 2.2, which
involves the steady state input and output variances. For single-input single-output
systems it has been shown, however, that in many cases good steady-state performance
can be obtained by basing the design on a single-step loss function (Modén and
Soderstrom 1982). The strategy (5.2) then gives a simple suboptimal method for
reducing the input variances.

It is straightforward to construct adaptive controllers based on single-step optimal
control. For the single-input single-output case an adaptive algorithm has been given
by Clarke and Gawthrop (1975, 1979), and generalizations to multivariable systems
have been considered by Koivo (1980) and Keviczky and Kumar (1981). In these
papers the observation is used that when r=p the strategy (5.2) can be considered as a
minimum variance strategy for the signal

$(1+ L+ 1)=y(t+L+ 1)+ Bo(Bo" 0,B0)™'P(0)TQ.P(g~Ju(t)  (5.3)

This is readily seen from eqns. (4.3), (4.6) and (5.2). Algorithm 4.1 can then be applied
to achieve minimum variance control of the auxiliary signal ¢, using in step | the
predictive model.

Bt + L+ 1) =g~ WD)+ Blg~ " Yu(t) +€(q~ Iy (t+L)
+2(q~ " n(t)+e(t+L+1) (5.4)

and in step 2 the control law (4.15). Apart from being restricted to systems with an
equal number of inputs and output, this approach has the drawback that there is no
convenient way of estimating the matrix B, in the algorithm, as this parameter
appears non-linearly in the equations, cf. eqn. (5.3). Therefore By is usually assumed
known (Koivo 1980, Keviczky and Kumar 1981).

A more direct approach, which does not have the above restrictions, is discussed
in Toivonen (1983 ¢). The following algorithm is obtained.
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Algorithm 5.1. Single-step optimal control (dim y, dim u arbitrary)

Step 1. Estimate the parameters of the predictive model (4.14) by the recursive
least squares method.

Step 2. Determine the control signal to minimize the loss function (5.1) for the
model obtained in step 1, i.e. determine u(f) from

BT 0,1 (g~ () + Blg~ " Jult)+6(q~ Wt + L)+ D(g™ In(1)]
+P0Y Q.P(q~ () =Bo" Quy(t+L+1)  (5.5)
where 8 o= %(0).
Steps 3 and 4 as in Algorithm 2.1.
Repeat from step | at each sampling instant.
In Toivonen (1983 ¢) the convergence of Algorithm 5.1 was studied using the
approach based on the associated differential equation (2.15). It was shown for the

case when B, is known that convergence to the required strategy (5.2) is obtained

if the transfer function
1
@

is strictly positive real.
A more general single-step cost function is given by (Keviczky and Kumar 1981)

Vi=E[(W)(g~ Wt+L+1)— W g~ )yt +L+1)T
x O, (Wy(g= " W(t+L+1)— W (g~ ")y (t+L+1))
+(W g~ DY) Wig~ 0(®) | y(t), ..., u(t), .-, n2), ...] (5.6)

where W,(+), W,(-) and W,(-) are matrix fraction descriptions. This case can be
handled as follows. Let W,(-) be expressed by the right prime matrix description

Wlg =Pl YW@ ")
and introduce the filtered signals
YO =W, (g~ ()
Ve (8)=WHg~ "y l1) (5.7)

up(t) =W~ (g™ u(t)

The loss function (5.6) then takes the form (5.1) in terms of the filtered signals y(r)
and ug(r). From (4.1) a predictive model of the form (4.3) can be derived for the
filtered signals. See Keviczky and Kumar (1981) for details. Algorithm 5.1 can then
be applied to the filtered signals (5.7). In (5.6) the design weights can be used to affect
the closed-loop response. For example, for stably invertible systems with dim y £dim #,
the choice W, (g=*)=0 gives the closed-loop response (cf. eqns. (4.7) and (5.7))

W,(g~Dy()=Wg~ " 1) +e) (5.8)

The approach can thus be used as an adaptive method to obtain a desired closed-loop
behaviour.
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The MUSMA R-algorithm

The design based on the single-step loss function (5.1) has the advantage that it is
possible to obtain a simple implicit adaptive algorithm, as Algorithm 5.1. The pro-
cedure is, however, not optimal for the stochastic control problem described in §2.2,
and it does not work well for systems with unknown time delays or other non-minimum
phase properties. In general, better control performance can be obtained by minimiz-
ing a multi-step loss function. The procedures described in § 3 can be used in this
case, but the computational advantages of Algorithm 5.1 are then lost. A method to
overcome the restrictions of Algorithm 5.1 is proposed by Menga and Mosca (1980).
In their approach (MUSMAR, Multistep Multivariable Adaptive Regulator), an
implicit adaptive algorithm of the form of Algorithm 5.1 is designed for minimizing
a multi-step loss function of the form (3.15) by using several predictive models
simultaneously.

If a constant feedback law is applied to the system (2.3) at ¢, r+1, ..., the future
outputs y(¢+1), ..., y(t+ N) and the inputs u(t+1), ..., u(t+ N) can be predicted at
the time instant 1. Menga and Mosca (1980) introduce the predictive models

Y(t+i)=ppdt) +O,9(t) + wt+i)
(5.9)
N

u(t +0)=du(t)+ i)+ vt +i), i=1, ...

where ¢(t) is given by (2.13 b) and wi(t+1), v(t+i),i=1, ..., N are uncorrelated with
u(t) and ¢(t). Minimization of an N-step loss function of the form (3.15) using (5.9)
gives the control law

N -1
u(r) = —[Q..+ T w7 Ot 47 Qﬁ.m]
N
x X (" QO+ 4T Qo)) (5:10)

An adaptive controller can be designed in analogy with Algorithm 5.1, by estimating
the parameters of the predictive models (5.9) using the least squares method, and by
determining the control signal according to (5.10). Simulation studies (Menga and
Mosca 1980, Mosca, Zappa and Manfredi 1982) have shown that the algorithm
performs favourably. Some theoretical results for the method have also been reported
(Mosca and Zappa 1980).

6. Simulated examples

Some simulated examples are now given in order to illustrate the use of the
adaptive controllers. More examples of the various algorithms can be found in the
references.

Example 1
Consider the system
V() + Ay p(t— 1) = Bou(t— 1)+ Byu(t — 2) + e(t) (6.1)
where

-08 05 2 0 1.2 —1
A, = , Bo= , B = , R.=FEe(e(t)T=0-25]
01 —-04 1 0 05 -2
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The system is difficult to control due to the structure of the By-matrix. In minimum
variance control the procedure described in § 4 can be used to handle the time delays.
The approach is suboptimal in this case, as an additional time delay is introduced in
the first input, cf. eqn. (4.21 b). The approach also requires that the time delays are
known.

For these reasons it is appropriate to use a method based on a multi-step loss
function. Here Algorithm 3.1 is used with the weights 0, =100/, Q,=1. The Riccati
equation was solved on-line by performing one iteration at each step, cf. eqn. (3.8).
This method of solving the Riccati equation required that the estimates do not vary
too much. Therefore, in order to obtain reasonably good initial estimates, the inputs
applied during the first 20 steps were PRBS-sequences of unit amplitude.

The estimated parameters obtained when the algorithm was simulated for the
system (6.1) are shown in Fig. |. Figure 2 shows the resulting feedback coefficients in
the control law

»(1)
u(t)=[L;(t) Ly(1)] (6.2)
u(t—1)

It is seen that the use of (3.8) to update the feedback law gives good performance
when the parameter estimates do not change too much from step to step.

Example 2

In this example a variance-constrained optimal control problem of the form (3.10)
is considered. The example also illustrates what happens when Algorithm 3.1 is based
on the least squares model (3.9) in a case when the model is not compatible with the
system.

Bo— parameters

0 500

(a)
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1

-
-

——

A4 - parameters

By~ parameters

(b}

Figure 1. Estimated parameters in Example 1. The true system parameters are indicated
by straight lines.

The following model has been applied to describe the dynamic behaviour of an
industrial cement kiln (Westerlund 1980)

WY+ Ay — D =Bou(t—1)+e(t)+ C,e{t— 1) (6.3)
where
[ —0:917 —0-0846] [ 206 —0-0746
Al = » BQ —
| 01132 —-0915 | | —0-108  —0-0192
[ —0-0449 —0-216] [0-0639  0-00188
C, = s, R.=
0-0256 0-841 | | 0-00188 0-0233
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Ly — porameters
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1

L, — parameters

0] 500
t

Figure 2. Control law parameters in Example 1.

The criterion for control is to minimize the loss function

. ]| o
V= J“:1111 Eﬁ ‘zi (@2 +p(t) =ry +1,, (6.4 a)

e 00

where the r, denote the steady state variances of the outputs, subject to the variance
constraints

Iy &
ro= lim E— Y u, (1) <0-004
N—oo N =1

) 6.4 b)
{ N
ro,= lim E— Y wu()*<1-5

N—sex =1
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The optimal variance constrained strategy for (6.3) gives the loss and the variances
Vein=0338, r,,=0-093, r,,=0245, r, =0-004, r,,=15 (6.5)

Algorithm 3.1 was applied using the least squares model
Y)Y+t — D) =Bou(t — 1)+ B u(t—2) + €(t) (6.6)

The input weights were adapted according to eqns. (3.12) and (3.14). The value
1=0-02 was used in (3.14). Figure 3 shows the result of a simulation of the adaptive
algorithm for the system described by (6.3). The initial parameter values were

2 0 10 0
,(0)=0, B,(0)=0, #,0)= s Qu=
0 —-0-02 0 0-0t
The sample averages obtained when using the adaptive controller are given in the

Table. For comparison, the Table also shows the sample averages obtained when using
the optimal variance constrained strategy which can be determined for (6.3).

i 4
T

0

0] 2000
Time

Figure 3. Inputs and cutputs of the system (6.3) in Example 2 when using the adaptive
controller based on (6.6).

c2
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Sample Adaptive Optimal
averages controller strategy
V 0-284 0-281
ry, 0-089 0-085
¥y, 0-195 0-197
Fuy 0-00401 0:00367

Fy, 1-44 1-32

Sample averages obtained for the system (6.3) in a 2000 step simulation when using
the adaptive controller and the optimal variance constrained strategy. The
same noise realization was used in the simulations.

As the model (6.6) is incompatible with (6.3) the adaptive controller, when based
on (6.6), does not converge to the optimal variance constrained strategy. The con-
vergence of the algorithm was studied by solving the associated differential equation
(cf. eqn. (2.15)) numerically. When the initial parameters were taken from the above
simulation at r=2000, the differential equation converged to a feedback law giving
the variances

V=0-350, r,,=0-119, r,=0-231, r,=0-004, r,=15, 6.7)

which can be compared with (6.5). The performance obtained in simulations, and the
near-optimality of the convergence point show that good results are obtained with the
least squares model (6.6). This is encouraging from a practical point of view, since
least squares models are often used in practice.

7. Conclusion

Techniques for multivariable stochastic adaptive control have been described. The
basic control problem considered is to control the system in such a way that the
steady state input and output variances are as small as possible. The adaptive
algorithms have been classified according to the underlying design method into algo-
rithms based on linear quadratic gaussian design, adaptive minimum variance
controllers, and algorithms based on single-step optimal control.

The optimal off-line design method for the stochastic control problems leads to
linear quadratic gaussian design. The adaptive controllers based on linear quadratic
gaussian design involve the on-line solution of a steady state Riccati equation, which
increases the computational requirements of the algorithm. In return, the approach
has the advantage that it can be applied to systems with unknown time delays and
other non-minimum phase properties.

The adaptive minimum variance controller is designed for the case when the
criterion for control is to achieve minimum output variance. The algorithm is appeal-
ing due to its simplicity. A major restriction of the procedure is the condition that the
system should be stably invertible. It has been shown how system time delays can be
handled in this approach if they are known.

The adaptive algorithms based on single-step optimal control are generalizations
of the adaptive minimum variance controller, preserving its computational simplicity,
but having design parameters by which the closed loop behaviour can be affected. The
approach can for example be applied to systems which are not stably invertible, by
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selecting the design weights of the generalized single-step loss function properly.
The problem is, however, that it is not always straightforward to find proper values
for the design parameters in such cases. The design method is also suboptimal since a
single-step loss function is used.

A generalization of the procedure based on single-step optimal control is the so-
called MUSMAR-algorithm, in which several predictive models with different
prediction times are used. The control signal is then determined to minimize a multi-
step loss function. As a multistep loss function is used, the procedure, which is
moderately simple, can be applied to systems with unknown time delays and other
non-minimum phase properties.

Many of the adaptive control techniques which have been considered are relatively
new, and they are still being developed. Therefore, very few applications of the
methods have been reported. However, in recent years there has been an increasing
interest in industrial applications of adaptive controllers designed for single-input
single-output systems (Astrém et al. 1977, Narendra and Monopoli 1980, Fjeld and
Willems 1981, Astrom 1983). The multivariable adaptive controllers seem promising
for industrial applications as well.
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