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A model for solving the Maxwell quasi-stationary equations in a
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A computer code has been developed for the approximate computation of
electric and magnetic fields within an electric reduction furnace. The paper
describes the numerical methods used to solve Maxwell’s quasi-stationary
equations, which are the governing equations for this problem. The equations
are discretized by a staggered grid finite difference technique. The resulting
algebraic equations are solved by iterating between computations of electric and
magnetic guantities. This ‘outer’ iteration converges only when the skin depth is
larger or of about the same magnitude as the linear dimensions of the computa-
tional domain, In solving for electric quantities with magnetic quantities being
regarded as known, and vice versa, the central computational task is the solution
of a Poisson equation for a scalar potential. These equations are solved by line
successive overrelaxation combined with a rebalancing technique.

1. Introduction

The quasi-stationary approximation to Maxwell’s equations can be applied to
alternating current (a.c.) problems in linear media. Computation of a.c. fields are
somewhat more problematic than the corresponding d.c. problem. In the a.c. case, the
electric field is influenced by the magnetic induction. One therefore needs to solve the
equations for both of these fields. Furthermore, the interaction between the two
fields tends to give the solution steeper gradients than in the d.c. case. A.c. fields
have been studied in connection with eddy current problems. Most of these studies
are limited to two-dimensional problems (Chari 1973, Salon et al. 1981). Carpenter
(1977) presents a discussion of various formulations of the full three-dimensional
problem in terms of vector and scalar potentials. Our formulation differs from these
in that the electric current and magnetic flux density fields are kept as the fundamental
variables. The coupling between those fields are then treated explicitly in the
numerical agorithm.

In order to study the a.c. distribution inside electric reduction furnaces, we have
developed a computer program named EROS. This is an acronym for the Norwegian
equivalent to ‘Electric Reduction Furnace Simulation’. Some computational results
from EROS were presented in Ekrann et al. (1980). The present paper describes the
numerical methods used to solve the field equations in the furnace volume.
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The main geometrical features of an electric reduction furnace are shown in
Fig. 1. Three cylindrical electrodes are symmetrically positioned in the furnace pot,
which is partly filled with liquid metal and surrounded by a cylindrical iron mantel.
3 phase electric current (50 Hz) is supplied through the electrodes.

Electrode
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Furnace pot
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Figure 1. Cross section of electric reduction furnace.

The electric conductivity and the magnetic permeability vary several orders of
magnitude over the furnace volume. Electric conductivities typically range from
10* S/m in the electrode and 102 S/m in the coke bed to 10~% S/m in the cold upper
charge. The central part will not be magnetic because of the high temperatures. In the
hood and the mantel there may be magnetic materials with a relative permeability
in the order of 102,

Figure 2. Horizontal coordinate system.
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In order to describe the geometry adequately, a special coordinate system was
constructed. The vertical coordinate is Cartesian, whereas the horizontal coordi-
nates are curvilinear. The horizontal coordinate system is shown in Fig. 2, where the
indicated lines are lines of constant coordinates. The system consists of three deformed
cylindrical systems (obtained by conformal mapping) surrounded by an ordinary
cylindrical system. The total system is therefore orthogonal except at a few singular
points. For ease of presentation, the following exposition will assume Cartesian
coordinates.

2. Governing equations

The quasi-stationary approximation to Maxwell’s equations are obtained (Weizel
1963) from the full set of Maxwell’s equations by deleting the displacement current
term. We also assume linear and isotropic media, i.e. linear relationships between the
magnetic flux density and the magnetic field strength and between the electric field
and the current density. The resulting equations will therefore be linear. We require
the boundary conditions to have harmonic time dependence. Because of the linearity,
the solution will then also be harmonic. When removing the harmonic time depen-
dence, we arrive at the following equations, written in the SI system of units:

VJ=0 (1a)
Vx(Jlo)=—iwB (1b)
VB=0 (l1c)
Vx(Blp)=J (1d)
Here
i=(=1)12
w=angular frequency [1/s]
o=celectric conductivity [S/m]
p=magnetic permeability [H/m]
J=current density (complex vector) [A/m?]

B =magnetic flux density (complex vector) [T]

In eqn. (1) the wave solutions are lost. This is a good approximation since the typical
wavelengths are several orders of magnitude larger than the linear dimensions of the
computational domain. Also, capacitance effects are excluded. At the power fre-
quency these effects are negligible in the present problem.

The assumption of linear media, on the other hand, limits the usefulness of the
model somewhat. For example, real furnaces contain materials which exhibit magnetic
hysteresis. Also, in some types of furnaces there are electric arcs extending from the
bottom of the electrodes. At present, these effects are ignored.

Scaling
We define a set of new (primed) quantities through

r=L*r" (radius vector)
o(r)=c*o'(r") (2)
wr)=p*p'(r)
N2
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and
1
L*

B(r)=p*B'(r')

L*, o* and p* are constants with the dimensions of », o and p, respectively. They are
understood to be typical values for these quantities. Using eqns. (2) and (3) we get
from eqn. (1):

)= T ) @

V=0 (4a)
V' x(J')e")= —iwl**p*o* B @b)
V'B' =0 @o)
V' x(B'|p)=J “44d

Equation (4) contains only scale independent quantities except for the factor

7= thZ”*O.* =L*2f3*2
where
&* =(wp*o*)~ 1/2

is a typical skin depth. 5, a squared relative length, is the critical parameter of the
problem. Roughly speaking, 5 governs the form of the solution. Also, this parameter
is of great importance for the performance of the numerical solution procedure we
are using.

Boundary conditions

Equation (1) is solved in a bounded three-dimensional domain. As indicated in
Fig. 2, the domain is cylindrical. Radially the domain is large enough to include the
mantel and vertically the domain includes the hood and terminates at the metal
surface. For B we always use the component normal to the boundary (B,) as the
boundary condition. Since very little is known about B, in practical situations, it has
been set equal to zero in all calculations so far. For J we use J, =0 as a boundary
condition on the vertical boundary and on the top boundary outside the intersection
with the electrodes. For the lower boundary and the electrode intersection boundary,
either J, or the component of J parallel to the boundary, J,, is used as a boundary
condition. Figure 3 illustrates the four possible alternatives. In practical situations, J
is not known at the metal surface. However, because of the very high electrical
conductivity, the metal bath effectively acts as a short-circuit. Therefore J, =0 can
be used on the lower boundary if a thin slice of the metal is included into the compu-
tational domain (Figs. 3 (a), 3 (¢)). The short-circuiting effect is alternatively achieved
by using J, =0 at the metal surface (Figs. 3 (b), 3 (d)). Figures 3 (¢) and 3 (d) show
the two alternatives we get when J, is used instead of J, on the electrode intersec-
tions. Here we have more than one area where J, is given. This means that the
boundary conditions for J have to be supplemented by voltage conditions. A voltage
drop is defined as the line integral of E=J/o along a specified path between two
points. The paths that are used are indicated by the dashed lines in Figs. 3 (¢), 3 (d).
The voltage drop along these paths must be specified. Note that these apparently
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Figure 3. Boundary conditions for J.

homogeneous cases, the boundary forcing is produced only by the specified voltage
drops. How the voltage drop conditions are actually implemented, are described in
somewhat more detail later.

3. Solution strategy

The governing equations (1) can be divided into two subsystems, When B is
known, (1 g, b) can be used to solve for J. Correspondingly, (1 ¢, d) can be solved for
B when J is known. This property is utilized in our solution scheme. We compute J
and B alternately in an iterative fashion. This is called the ‘outer iteration’. In the
actual implementation, real and imaginary parts of J and B are treated separately.
The computational sequence is Re J—-+Re B->Im J—>Im B.

Convergence of outer iteration
The solution of (4 a, b) can be written formally
J'=F,(—inB')+H,
or, due to linearity,
J'=—inFy(B')+ H, )
Here, F,(—inB’) is the solution to (4 a, b) with homogeneous boundary conditions. H,

is the solution when the source term (— inB’) vanishes. Correspondingly, (4 ¢, d) have
the solution

B'=Fy(J')+Hy (6)
Using (5) and (6) iteratively and eliminating B’, we have
I = —ig(FyFg)(J™) —inF (Hp)+ H, O]

where £ is the iteration count. When letting J’ be the solution to (4) and defining the
error D" as

Dr=Jy—Jm
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we arrive at
D":(—f’)}N(FJFB)"(D") 8)

We conclude that % is of paramount importance for the convergence of the outer
iteration even in the continuous case, although nothing quantitative can be said until
the properties of the mapping (F;Fp) have been established. Equation (8) implies a
slower convergence of (7) when 7 increases.

Treatment of the subsystems

The subsystems (1 @, b) and (1 ¢, d) have an identical form. We describe the
treatment of (1 @, b) when B is regarded as known. Equation (1 ¢, d) is treated in an
analogous manner.

J is decomposed into

J=I,+1, ®)
with J, satisfying
Vx(J,/o)=—iwB (10)
implying
Vx(J,lo)=0
or
J,=—-aVd (11)

where ¢ is a scalar potential. Equations (9), (11) and (1 a) give
V(eVe)=VJ, (12)

Equation (10) has an infinite number of solutions. The choice of solution may be
based on the ease of implementation. The numerical solution of (12) is the main
computational task of the present problem. The boundary conditions for J transform
into boundary conditions for J, when J, is given. A particular solution for J; is
always computed before solving for ¢. J, given corresponds to a von Neuman type
of boundary condition for ¢

o 1
5’1—;("!1*"1]

J, given is equally straightforward. Let 8Q,(i= 1, N) be the simply connected parts of
the boundary 2Q where J, is given as a boundary condition. In each 2, we have:

)=o)+ § (=Tl (13)
C o

where 4l is the length element along the arbitrary curve Ced{; connecting roed
and redQ,. Thus, when J, is given it corresponds to a Dirichlet type of boundary
condition for 4.

The voltage conditions described earlier fix all but one of the constants ¢(ro).
The last constant may be chosen arbitrarily, as its value does not influence the primary
variable J. For von Neuman conditions on the whole boundary, the potential must
be specified at one internal point. The value chosen here does not influence J.
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4. Discretization

In the standard fashion, the computational domain is divided into a three-
dimensional array of grid cells by a set of constant coordinate surfaces. We assume
constant material data (o and ) within each cell. A staggered grid is used, that is the
computational points for the magnetic quantities are displaced half a grid increment
in each of the three coordinate directions as compared to the computational points
for electric quantities. This is illustrated below for an internal grid cell with space
indices i, j and k. Arrows on the grid cell edges indicate components of J, while arrows
on the cell face centres indicate components of B. The crosses indicate computational
points for the scalar potential in (12), while the small circle indicates a computational
point for the corresponding magnetic scalar potential. Equation (12) is discretized
by what is commonly referred to as box integration. For each grid cell corner the
equation is integrated over a control volume, or box, centred at the grid cell corner
and extending halfway into the neighbouring grid cells. Through Gauss’ theorem the
volume integral is transformed into a surface integral over the control volume
boundary. A typical contribution is the surface integral from a cell face normal to the
x-direction

1o (Euit) v (14)
where E, = J, /o.
i1k ik
e - 1
~ t -~
W ; — : W
n
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Figure 4. Computational points.

The integral represents the current through this face. For the face common to the
boxes centred on ¢;_, ;, and &,;, in Fig. 4, (14) is approximated by

bi1ix— b+ V.
Ax;

J
S adydz (15)
with

Xy
Vi = I Eyx dx
Xi-1
where the line integral is taken along the appropriate grid cell edge. The surface
integral in (15) can be evaluated exactly when o is a constant within each grid cell.
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For each internal box, the contributions from the six faces are assembled,
giving an equation expressing current conservation. This is a linear equation in the
box potential and the six neighbouring potentials. For a potential on the boundary,
the equation must be modified. If J, is given, the corresponding face current is known.
When J, is given, ¢ may be computed from (13), which then replaces the current
conservation equation.

The resulting algebraic equations can be written in matrix form as’

Ap=b (16)

The elements of the vector ¢ are the unknown potentials and the elements of b are
the contributions from the source term in (12) and from the non-homogeneous
boundary conditions. It can easily be shown that the coefficient matrix A is sym-
metric and diagonally dominant, implying that (16) may be solved by a standard
iterative method like successive line overrelaxation (SLOR).

The preceding is all fairly straightforward, except for the coefficient o in (12) being
discontinuous. This, however, is no problem since we require parallel components of
E to be continuous over discontinuities in o. Equation (15) may be interpreted as a
parallel coupling of electric conductances.

The corresponding scalar potential for B is treated in an analogous manner. The
control volumes will in this case coincide with the grid cells. The expression equivalent
to (15) may be interpreted as a series coupling of magnetic conductances, i.e. we
require the normal component of B to be continuous over discontinuities in w.

With non-varying o and p, the approximations described above are second order
in grid increments (Ax, Ay, Az) when these are constant. Where the grid increments
change, the approximations are first and zeroth order for the electric and magnetic
potentials, respectively (Aziz et al. 1979). A local zeroth order approximation is not
particularly pleasing, of course, but by no means catastrophic. A first order approxi-
mation to the magnetic potential equation can be achieved by using the same
computational points for the magnetic as for the electric quantities, abandoning the
staggered grid. As we shall see, however, the staggered grid has the benefit of increas-
ing the accuracy of the coupling between the electric and the magnetic quantities.

The equation (10) is discretized by integrating over grid cell faces. For convenience,
we may choose E,,=0. Using Stoke’s theorem for the back face of the box in Fig. 4 as
an example, we get:

Vais' = Verju—r? = —iw | | Bydx dz (17)

Note first that there are no approximations involved in the terms on the left hand side.
Also, these quantities are exactly the ones needed in (15) and in the implementation
of J, boundary conditions. Note also that an approximation to the integral on the
right hand side is directly available from the solution of the magnetic equation
equivalent to (16), which expresses the magnetic flux conservation.

The discretization described above can be seen as approximating a differential
equation problem with a three-dimensional network problem. An elementary cell of
the network is shown in Fig. 5. A three-dimensional electric network staggered with a
three-dimensional magnetic network is shown. The conductances, as described
previously, are computed from o and g, together with the geometrical quantities.
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Figure 5. Three-dimensional staggered electric and magnetic networks.

Accuracy of coupling between electric and magnetic quantities
Consider the simple example of an infinite conducting wall (o, 1 constant) with
J=J(x)k and B=B(x)j
where k and j are unit vectors in z- and y-directions, respectively (see Fig. 6). Equation
(1) reduces to
_ii" =iwoB (18 a)

ox

B _ . (18 b)
ox
With boundary conditions
J(x=0)=J, J(x=00)=0
(18) has the solution
J(x)=J, exp (—(iwop)"'?x)
At the discrete points x,=kAx, k=0, ..., we have

J(kAx)=Jo(exp (—(i7*)"?)) = Jod*

with
7* = woulx?
Discretizing (18) in a uniform staggered grid, as indicated in Fig. 6 we get
‘-I'Hix—_‘rk=im8k+l k=0, was
B*+'_:Bk=pu’k k = l, 300

which after the elimination of B can be solved to give

Jo=1J, (2+iﬂ*—1/gﬂ*(4i—n*)))“g‘,,ob, (19)
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Figure 6. Grid for one-dimensional equations.

Similarly, with a non-staggered grid (requiring interpolation) we can compute the

discrete solution
2—+/(in*)\*
Jo= ) =T 20
i=Jo (2+ o) = (20)
The accuracy of the approximations (19) and (20) is determined by the accuracy with
which & and ¢, respectively, approximate a.
It can be proved that |b|, like |a|, tends monotonically to zero as * tends to

infinity, while lim |c|=1. The n* dependence of |a|, |b| and |c| is shown in
7
the Table. From the Table is is obvious that the staggered grid approximation is

superior to the non-staggered one. We expect this conclusion to be valid in the general
three-dimensional case as well and this is our reason for the choice of a staggered grid.

Ik 104 10-2 10-! 10 10?

a 0-99295 093173  0-7996 0-1069 8-493 x10~4
b 0-99295 0-93170  0-7989 0-0972 9:997 x 10~3
c 0-99295 0-93179  0-8011 0-4694 7-566 x 10!

Accuracy of staggered and non-staggered grid approximations.

5. Solution of the discrete equations
Solution of the curl equations

The solution of the curl equations (17) is straightforward. If V,,;,” is known at the
lower boundary (17) may be solved recursively. Since B,=0 here, we may choose
Eyy=Ej,=Vy50' = Ve’ =0.

In the magnetic case, the equation equivalent to (17) can be solved in the same
manner, except that the first ¥,?, V,? are computed in a horizontal plane Az, /2 over
the lower boundary. We may never assume J,=0 here. However, V,” and V,® can
easily be constructed to satisfy the proper curl equation, even with J,#0, providing a
starting point for the recursion. We will omit the details.
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Solution of potential equations

As mentioned previously, the coefficient matrix A in (16) has the properties which
guarantee convergence when using the SLOR technique. We use SLOR as our basic
scheme. SLOR, however, as well as other standard point or block iterative tech-
niques, will have a disastrously slow convergence in the present case. This is caused by
the occurrence of isolated subdomains with a very high conductivity. Combining
SLOR with a rebalancing technique (Nakamura 1977, Froehlich 1967) we achieve
dramatic improvements. This technique has previously been used by De la Valee
Poussin (1968) on a similar problem.

Convergence of the outer iteration in the discrete case

In the discrete case, the mappings F; and Fg in eqns. (5)~(8) will be matrices.
From (8) we may immediately conclude that the outer iteration will converge if

np(F;Fg)<1

where p(F;Fg) is the spectral radius of F,Fp.

In the general case it is difficult to estimate the eigenvalues of F,Fy. In order to
get some quantitative idea when to expect convergence, we resort once more to a
one-dimensional example.

One-dimensional example

The geometry of the example is as illustrated in Fig. 6, except that the wall has
finite thickness. J is given at both end points with the values J, and Ji ,, respectively.
The outer iteration takes the form

CI"* ' = ig*I" 4 F @1)
with
C 2 07 "7, Y A
1 -2 1 : 0
C= e | I= F=
1 -2 1 0
0 - | Uk ] | —Jear |

C has the eigenvalues (Isaacson and Keller 1966)

A,= —4sin? (gpff(+ l) r=1,..K

from which we conclude that (21) converges if

73*

4 sin? (g/K+l)

[in*A, ~'| being the spectral radius of ip*C~"'.

<1 (22)
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For fixed n* the left hand side of (22) is larger the larger K is, i.e. the convergence
properties of (21) deteriorates with increasing wall thickness. The same thing happens
with decreasing skin depth 8 =(wpo)~'/2. This agrees with the general conclusions.

Writing
M 2
LK b 1’(7)

B A
4sin? (g/K+l) 4sin? (; T")

where L=(K+ 1)Ax is the wall thickness and 5= wopl?, we have in the limiting case
with L constant and Ax -0 the convergence criterion

LT (23)

m

At the other extreme, L =2Ax, we have

n
3 <l (24)

Roughly speaking, (23) and (24) express that convergence in the outer iteration is to
be expected when the skin depth is larger than about a third of the linear dimensions
of the problem. The convergence depends only weakly on the fineness of discretiza-
tion. This implies that we may have a discretization which is sufficiently accurate but
for which the outer iteration fails to converge.

Practical experience indicates that these conclusions are valid even in the three-
dimensional case when the computational domain is approximately homogeneous.
In the present problem we have subdomains (electrodes, hood, mantel), where the
skin depth is several orders of magnitude smaller than elsewhere. Therefore, these
subdomains are decisive for the convergence of the outer iteration.
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