**Page description appears here**

“Control System Commissioning of Fully Levitated Bearingless Machine”

Authors: Pekko Jaatinen, Jouni Vuojolainen, Niko Nevaranta, Rafal Jastrzebski and Olli Pyrhönen,
Affiliation: Lappeenranta University of Technology
Reference: 2019, Vol 40, No 1, pp. 27-39.

     Valid XHTML 1.0 Strict


Keywords: Bearingless, magnetic levitation, MIMO control, self-levitating, system identification, 5-DOF

Abstract: The bearingless permanent magnet synchronous motor (BPMSM) is a compact motor structure that combines the motoring and bearing functions based on well-designed integrated windings for generating both torque and magnetic suspension force. In order to achieve a successful high-performance control design for the BPMSM, an adequate model of the rotor dynamics is essential. This paper proposes simplified multiple-input and multiple-output (MIMO) control approaches, namely the pole placement and the linear-quadratic regulator (LQR), that allow to carry out identification experiments in full levitation. Additionally, the stability of the MIMO levitation controller is verified with the rotation tests. Compared with other recently published works, the novelty of this paper is to experimentally demonstrate that a stable fully levitated five-degrees-of-freedom (5-DOF) operation of a bearingless machine can be achieved by the proposed approach, and thereby, options for commissioning of such a system are obtained.

PDF PDF (4798 Kb)        DOI: 10.4173/mic.2019.1.3





References:
[1] Cao, X., Yang, H., Zhang, L., and Deng, Z. (2016). Cao, X, , Yang, H., Zhang, L., and Deng, Z. Compensation strategy of levitation forces for single-winding bearingless switched reluctance motor with one winding total short circuited. IEEE Trans. on Ind. Electron.. 63(9):5534--5546. doi:10.1109/TIE.2016.2558482
[2] Cao, X., Zhou, J., Liu, C., and Deng, Z. (2017). Cao, X, , Zhou, J., Liu, C., and Deng, Z. Advanced control method for single-winding bearingless switched reluctance motor to reduce torque ripple and radial displacement. IEEE Trans. Energy Convers.. PP(99):1--1. doi:10.1109/TEC.2017.2719160
[3] Chen, L. and Hofmann, W. (2011). Chen, L, and Hofmann, W. Modelling and control of one bearingless 8-6 switched reluctance motor with single layer of winding structure. In 14th European Conf. on Power Electron. and Appl. (EPE). pages 1--9. .
[4] Chiba, A., Fukao, T., Ichikawa, O., Oshima, M., Takemoto, M., and Dorrell, D.G. (2009). Chiba, A, , Fukao, T., Ichikawa, O., Oshima, M., Takemoto, M., and Dorrell, D.G. Magnetic bearings and bearingless drives, pages 1--15. Elsevier, Amsterdam, The Netherlands. doi:10.1016/B978-0-7506-5727-3.X5000-7
[5] Chiba, A., Horima, S., and Sugimoto, H. (2013). Chiba, A, , Horima, S., and Sugimoto, H. A principle and test results of a novel bearingless motor with motor parallel winding structure. In IEEE Energy Convers. Congr. and Expo. (ECCE). pages 2474--2479. doi:10.1109/ECCE.2013.6647019
[6] Franklin, G.F., Powell, J., and Workman, M.L. (2010). Franklin, G, F., Powell, J., and Workman, M.L. Digital control of dynamic systems, pages 364, 400--401. Ellis-Kagle Press, 1200 Pilarcitos Ave. Halfmoon Bay, CA 94019. .
[7] GerhardSchweitzer, E. H.M. (2009). GerhardSchweitzer, E, H.M. Magnetic bearings, pages 1--82. Springer-Verlag Berlin Heidelberg, Springer-Verlag Berlin Heidelberg, 2009. doi:10.1007/978-3-642-00497-1
[8] Hoshi, H., Shinshi, T., and Takatani, S. (2006). Hoshi, H, , Shinshi, T., and Takatani, S. Third-generation blood pumps with mechanical noncontact magnetic bearings. Artificial Organs. 30(5):324--338. doi:10.1111/j.1525-1594.2006.00222.x
[9] Huang, J., Li, B., Jiang, H., and Kang, M. (2014). Huang, J, , Li, B., Jiang, H., and Kang, M. Analysis and control of multiphase permanent-magnet bearingless motor with a single set of half-coiled winding. IEEE Trans. on Ind. Electron.. 61(7):3137--3145. doi:10.1109/TIE.2013.2279371
[10] ISO 14839-2:2004(E). (0). ISO 14839-2:2004(E), Mechanical vibration -- Vibration of rotating machinery equipped with active magnetic bearings -- Part 2: Evaluation of vibration. Standard, International Organization for Standardization, Geneva, CH, 2004. .
[11] Jaatinen, P., T.Sillanpaeae, R.J., and Pyrhonen, O. (2016). Jaatinen, P, , T.Sillanpaeae, R.J., and Pyrhonen, O. Automated parameter identification platform for magnetic levitation systems: case bearingless machine. In 15th Int. Symp. on Magnetic Bearings. 2016. .
[12] Kauss, W.L., Gomes, A. C. D.N., Stephan, R.M., and David, D. F.B. (2008). Kauss, W, L., Gomes, A. C. D.N., Stephan, R.M., and David, D. F.B. Lqr control of a bearingless machine implemented with a dsp. In 11th Int. Symp. on Magnetic Bearings. pages 475--480. .
[13] Kolondzovski, Z., Sallinen, P., Belahcen, A., and Arkkio, A. (2010). Kolondzovski, Z, , Sallinen, P., Belahcen, A., and Arkkio, A. Rotordynamic analysis of different rotor structures for high-speed permanent-magnet electrical machines. IET Electric Power Appl.. 4(7):516--524. doi:10.1049/iet-epa.2008.0272
[14] Messager, G. and Binder, A. (2016). Messager, G, and Binder, A. Observer-based pole placement control for a double conical high-speed bearingless permanent magnet synchronous motor. In 18th European Conf. on Power Electron. and Appl. (EPE). pages 1--10. doi:10.1109/EPE.2016.7695264
[15] Mitterhofer, H. and Amrhein, W. (2012). Mitterhofer, H, and Amrhein, W. Motion control strategy and operational behaviour of a high speed bearingless disc drive. In 6th IET Int. Conf. on Power Electron., Mach. and Drives (PEMD). pages 1--6. doi:10.1049/cp.2012.0297
[16] Noh, M., Gruber, W., and Trumper, D.L. (2017). Noh, M, , Gruber, W., and Trumper, D.L. Hysteresis bearingless slice motors with homopolar flux-biasing. IEEE/ASME Transactions on Mechatronics. PP(99):1--1. doi:10.1109/TMECH.2017.2740429
[17] Ooshima, M., Chiba, A., Rahman, A., and Fukao, T. (2004). Ooshima, M, , Chiba, A., Rahman, A., and Fukao, T. An improved control method of buried-type ipm bearingless motors considering magnetic saturation and magnetic pull variation. IEEE Trans. Energy Convers.. 19(3):569--575. doi:10.1109/TEC.2004.832065
[18] Ooshima, M., Kobayashi, A., and Narita, T. (2015). Ooshima, M, , Kobayashi, A., and Narita, T. Stabilized suspension control strategy at failure of a motor section in a d-q axis current control bearingless motor. In IEEE Ind. Ind. Soc. Annu. Meeting. pages 1--7. doi:10.1109/IAS.2015.7356813
[19] Qiu, Z., Dai, J., Yang, J., Zhou, X., and Zhang, Y. (2015). Qiu, Z, , Dai, J., Yang, J., Zhou, X., and Zhang, Y. Research on rotor eccentricity compensation control for bearingless surface-mounted permanent-magnet motors based on an exact analytical method. IEEE Trans. Magn.. 51(11):1--4. doi:10.1109/TMAG.2015.2451163
[20] Schneider, T. and Binder, A. (2007). Schneider, T, and Binder, A. Design and evaluation of a 60 000 rpm permanent magnet bearingless high speed motor. In 7th Int. Conf. on Power Electron. and Drive Sys. (PEDS). pages 1--8. doi:10.1109/PEDS.2007.4487669
[21] Severson, E., Nilssen, R., Undeland, T., and Mohan, N. (2017). Severson, E, , Nilssen, R., Undeland, T., and Mohan, N. Design of dual purpose no voltage combined windings for bearingless motors. IEEE Trans. Ind. Appl.. PP(99):1--1. doi:10.1109/TIA.2017.2706653
[22] Smirnov, A. (2012). Smirnov, A, AMB system for high-speed motors using automatic commissioning. Ph.D. thesis, Lappeenranta University of Technology, Lappeenranta, Finland. .
[23] Sun, X., Shi, Z., Chen, L., and Yang, Z. (2016). Sun, X, , Shi, Z., Chen, L., and Yang, Z. Internal model control for a bearingless permanent magnet synchronous motor based on inverse system method. IEEE Trans. Energy Convers., 2016. 31(4):1539--1548. doi:10.1109/TEC.2016.2591925
[24] Sun, X., Xue, Z., Zhu, J., Guo, Y., Yang, Z., Chen, L., and Chen, J. (2016). Sun, X, , Xue, Z., Zhu, J., Guo, Y., Yang, Z., Chen, L., and Chen, J. Suspension force modeling for a bearingless permanent magnet synchronous motor using maxwell stress tensor method. IEEE Trans. Appl. Supercond., 2016. 26(7):1--5. doi:10.1109/TASC.2016.2599708
[25] Swanson, E.E., Maslen, E.H., Li, G., and Cloud, C.H. (2008). Swanson, E, E., Maslen, E.H., Li, G., and Cloud, C.H. Rotordynamic design audits of amb supported machinery. In 37th Turbomachinery Symp. pages 133--158. .
[26] Takemoto, M., Iwasaki, S., Miyazaki, H., Chiba, A., and Fukao, T. (2009). Takemoto, M, , Iwasaki, S., Miyazaki, H., Chiba, A., and Fukao, T. Experimental evaluation of magnetic suspension characteristics in a 5-axis active control type bearingless motor without a thrust disk for wide-gap condition. In IEEE Energy Convers. Congr. and Expo. (ECCE). pages 2362--2367. doi:10.1109/ECCE.2009.5316174
[27] Vuojolainen, J., Nevaranta, N., Jastrzebski, R., and Pyrhonen, O. (2017). Vuojolainen, J, , Nevaranta, N., Jastrzebski, R., and Pyrhonen, O. Comparison of excitation signals in active magnetic bearing system identification. Modeling, Identification and Control. 38(3):123--133. doi:10.4173/mic.2017.3.2
[28] Warberger, B., Reichert, T., Nussbaumer, T., and Kolar, J.W. (2010). Warberger, B, , Reichert, T., Nussbaumer, T., and Kolar, J.W. Design considerations of a bearingless motor for high-purity mixing applications. In SPEEDAM. pages 1454--1459. doi:10.1109/SPEEDAM.2010.5545102
[29] Xue, B., Wang, H., Tang, S., and Liang, J. (2015). Xue, B, , Wang, H., Tang, S., and Liang, J. Levitation performance analysis for bearingless switched reluctance motor. In 18th Int. Conf. on Elect. Machines and Syst. (ICEMS). pages 264--270. doi:10.1109/ICEMS.2015.7385039
[30] Yamamoto, N., Takemoto, M., Ogasawara, S., and Hiragushi, M. (2011). Yamamoto, N, , Takemoto, M., Ogasawara, S., and Hiragushi, M. Experimental estimation of a 5-axis active control type bearingless canned motor pump. In IEEE Int. Electric Machines and Drives Conf. (IEMDC). pages 148--153. doi:10.1109/IEMDC.2011.5994829
[31] Yang, S.M. and Chen, C.C. (2009). Yang, S, M. and Chen, C.C. Improvements of radial force control for a spm type pmsm self-bearing motor drive (ecce). In IEEE Energy Convers. Congr. and Expo. pages 3451--3455, 2009. doi:10.1109/ECCE.2009.5316514
[32] Yang, Y., Deng, Z., Yang, G., Cao, X., and Zhang, Q. (2010). Yang, Y, , Deng, Z., Yang, G., Cao, X., and Zhang, Q. A control strategy for bearingless switched-reluctance motors. IEEE Trans. Power Electron.. 25(11):2807--2819. doi:10.1109/TPEL.2010.2051684
[33] Yoon, Y., Lin, Z., and Allaire, P.E. (2013). Yoon, Y, , Lin, Z., and Allaire, P.E. Control of surge in centrifugal compressors by active magnetic bearings, pages 92--94. Springer-Verlag London, Berlin, Heidelberg. doi:10.1007/978-1-4471-4240-9
[34] Zhang, S., Liu, L., Wang, S., Jia, Y., and Qie, C. (2016). Zhang, S, , Liu, L., Wang, S., Jia, Y., and Qie, C. Complete control of radial suspension force for bearingless induction motors. In IEEE 11th Conf. on Ind. Electron. and Appl. (ICIEA). pages 2180--2184. doi:10.1109/ICIEA.2016.7603950
[35] Zhao, C. and Zhu, H. (2017). Zhao, C, and Zhu, H. Design and analysis of a novel bearingless flux-switching permanent magnet motor. IEEE Trans. on Ind. Electron.. 64(8):6127--6136. doi:10.1109/TIE.2017.2682018


BibTeX:
@article{MIC-2019-1-3,
  title={{Control System Commissioning of Fully Levitated Bearingless Machine}},
  author={Jaatinen, Pekko and Vuojolainen, Jouni and Nevaranta, Niko and Jastrzebski, Rafal and Pyrhönen, Olli},
  journal={Modeling, Identification and Control},
  volume={40},
  number={1},
  pages={27--39},
  year={2019},
  doi={10.4173/mic.2019.1.3},
  publisher={Norwegian Society of Automatic Control}
};

News

Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.