**Page description appears here**

“Finding Clusters in Petri Nets. An approach based on GPenSIM”

Authors: Reggie Davidrajuh, Damian Krenczyk and Bozena Skolud,
Affiliation: University of Stavanger and Silesian University of Technology
Reference: 2019, Vol 40, No 1, pp. 1-10.

     Valid XHTML 1.0 Strict


Keywords: Clusters, peer-pressure method, Petri Nets, GPenSIM, Flexible Manufacturing System

Abstract: Graph theory provides some methods for finding clusters in networks. Clusters reflect the invisible grouping of the elements in a network. This paper presents a new method for finding clusters in networks. In this method, the user can adjust a parameter to change the number of clusters. This method is newly added to the simulator General-purpose Petri Net Simulator (GPenSIM) as a function for network analysis. With this GPenSIM function, in addition to the usual performance analysis of a discrete-event system via a Petri net model, supplementary information about the grouping of the elements can also be found. Finding clusters in discrete-event systems provides valuable information such as the ideal location of the elements in a manufacturing network. This paper also presents an application example on a flexible manufacturing system.

PDF PDF (744 Kb)        DOI: 10.4173/mic.2019.1.1





References:
[1] Abbaszadeh, A., Abedi, M., and Doustmohammadi, A. (2018). Abbaszadeh, A, , Abedi, M., and Doustmohammadi, A. General stochastic petri net approach for the estimation of power system restoration duration. International Transactions on Electrical Energy Systems. 28(6):e2550. doi:10.1002/etep.2550
[2] Bi, Z.M., Lang, S. Y.T., Shen, W., and Wang, L. (2008). Bi, Z, M., Lang, S. Y.T., Shen, W., and Wang, L. Reconfigurable manufacturing systems: the state of the art. International Journal of Production Research. 46(4):967--992. doi:10.1080/00207540600905646
[3] Cameron, A., Stumptner, M., Nandagopal, N., Mayer, W., and Mansell, T. (2015). Cameron, A, , Stumptner, M., Nandagopal, N., Mayer, W., and Mansell, T. Rule-based peer-to-peer framework for decentralised real-time service oriented architectures. Science of Computer Programming. 97:202 -- 234. doi:10.1016/j.scico.2014.06.005
[4] Complete Code for the example. (0). Complete Code for the example, 2019. http://www.davidrajuh.net/gpensim/Pub/2019/MIC/, Accessed on 07 January 2019. .
[5] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2009). Cormen, T, H., Leiserson, C.E., Rivest, R.L., and Stein, C. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition. .
[6] Davidrajuh, R. (2008). Davidrajuh, R, Developing a new petri net tool for simulation of discrete event systems. In 2008 Second Asia International Conference on Modelling Simulation (AMS). pages 861--866. doi:10.1109/AMS.2008.13
[7] Davidrajuh, R. (2018). Davidrajuh, R, Modeling Discrete-Event Systems with GPenSIM. Springer International Publishing, Cham. doi:10.1007/978-3-319-73102-5
[8] Davidrajuh, R., Skolud, B., and Krenczyk, D. (2018). Davidrajuh, R, , Skolud, B., and Krenczyk, D. Gpensim for performance evaluation of event graphs. In Advances in Manufacturing, number 201519 in Lecture Notes in Mechanical Engineering. Springer International Publishing, Cham, pages 289--299, 2018. doi:10.1007/978-3-319-68619-6_28
[9] Davidrajuh, R., Skolud, B., and Krenczyk, D. (2018). Davidrajuh, R, , Skolud, B., and Krenczyk, D. Performance evaluation of discrete event systems with gpensim. Computers, 2018. 7(1):8. doi:10.3390/computers7010008
[10] van Dongen, S. (2000). van Dongen, S, Graph Clustering by Flow Simulation. Ph.D. thesis, University of Utrecht. .
[11] Gilbert, J.R., Reinhardt, S., and Shah, V.B. (2007). Gilbert, J, R., Reinhardt, S., and Shah, V.B. High-performance graph algorithms from parallel sparse matrices. In Proceedings of the 8th International Conference on Applied Parallel Computing: State of the Art in Scientific Computing, PARA'06. Springer-Verlag, pages 260--269. doi:10.1007/978-3-540-75755-9_32
[12] GPenSIM: A General Purpose Petri Net Simulator. (0). GPenSIM: A General Purpose Petri Net Simulator, 2019. http://www.davidrajuh.net/gpensim, Accessed on 07 January 2019. .
[13] Hermann, M., Pentek, T., and Otto, B. (2016). Hermann, M, , Pentek, T., and Otto, B. Design principles for industrie 4.0 scenarios. In Proceedings of the Annual Hawaii International Conference on System Sciences, volume 2016-March. pages 3928--3937. doi:10.1109/HICSS.2016.488
[14] Jyothi, S.D. (2012). Jyothi, S, D. Scheduling flexible manufacturing system using petri-nets and genetic algorithm. Department of Aerospace Engineering, Indian Institute of Space Science and Technology: Thiruvananthapuram, India. .
[15] Kepner, J. and Gilbert, J. (2011). Kepner, J, and Gilbert, J. Graph algorithms in the language of linear algebra. SIAM. doi:10.1137/1.9780898719918
[16] Kioon, S.A., Bulgak, A.A., and Bektas, T. (2009). Kioon, S, A., Bulgak, A.A., and Bektas, T. Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration. European Journal of Operational Research. 192(2):414 -- 428. doi:10.1016/j.ejor.2007.09.023
[17] Krenczyk, D., Skolud, B., and Herok, A. (2018). Krenczyk, D, , Skolud, B., and Herok, A. A heuristic and simulation hybrid approach for mixed and multi model assembly line balancing. In Intelligent Systems in Production Engineering and Maintenance -- ISPEM 2017, volume 637 of Advances in Intelligent Systems and Computing. Springer International Publishing, Cham, pages 99--108. doi:10.1007/978-3-319-64465-3_10
[18] Krivanek, M. and Moravek, J. (1986). Krivanek, M, and Moravek, J. Np-hard problems in hierarchical-tree clustering. Acta Informatica. 23(3):311--323. doi:10.1007/BF00289116
[19] Mutarraf, U., Barkaoui, K., Li, Z., Wu, N., and Qu, T. (2018). Mutarraf, U, , Barkaoui, K., Li, Z., Wu, N., and Qu, T. Transformation of business process model and notation models onto petri nets and their analysis. Advances in Mechanical Engineering. 10(12):1687814018808170. doi:10.1177/1687814018808170
[20] Neumann, M., Constantinescu, C., and Westkämper, E. (2012). Neumann, M, , Constantinescu, C., and Westkämper, E. Method for multi-scale modeling and simulation of assembly systems. Procedia CIRP. 3:406 -- 411. doi:10.1016/j.procir.2012.07.070
[21] Peterson, J.L. (1981). Peterson, J, L. Petri net theory and the modeling of systems. Prentice Hall PTR. .
[22] Robinson, E. (2011). Robinson, E, 6. complex graph algorithms. In J.Kepner and J.Gilbert, editors, Graph Algorithms in the Language of Linear Algebra, pages 59--84. Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898719918.ch6


BibTeX:
@article{MIC-2019-1-1,
  title={{Finding Clusters in Petri Nets. An approach based on GPenSIM}},
  author={Davidrajuh, Reggie and Krenczyk, Damian and Skolud, Bozena},
  journal={Modeling, Identification and Control},
  volume={40},
  number={1},
  pages={1--10},
  year={2019},
  doi={10.4173/mic.2019.1.1},
  publisher={Norwegian Society of Automatic Control}
};

News

Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.