**Page description appears here**

“Energy Saving Potential in Knuckle Boom Cranes using a Novel Pump Controlled Cylinder Drive”

Authors: Søren Ketelsen, Lasse Schmidt, Viktor Hristov Donkov and Torben Ole Andersen,
Affiliation: Aalborg University
Reference: 2018, Vol 39, No 2, pp. 73-89.

     Valid XHTML 1.0 Strict


Keywords: Energy efficient hydraulic actuation, pump controlled cylinder, cylinder direct drive, offshore cranes, multivariable control

Abstract: This paper is considering the application of a novel pump controlled cylinder drive, the so-called Speed-variable Switched Differential Pump (SvSDP), for knuckle boom crane actuation. Especially the control system for the SvSDP drive is considered, and aiming on improving energy efficiency a refinement of the existing control structure is proposed. An energy efficient sizing algorithm for the SvSDP drive is developed, and fundamental differences between the achievable operating range for the SvSDP drive compared to a conventional valve-cylinder drive are discussed. A case study is conducted with knuckle boom crane actuation, and compared to a conventional valve actuation. Simulation results show that the motion tracking performance is on a similar level compared to the valve actuation approach, while the energy consumption is drastically decreased. For the given test trajectory the valve actuation system consumes 0.79 kWh of electrical energy, while the SvSDP drive consume 0.06 kWh, if ideal energy recovery and storage is assumed.

PDF PDF (4730 Kb)        DOI: 10.4173/mic.2018.2.3





References:
[1] Caliskan, H., Balkan, T., and Platin, B.E. (2016). Caliskan, H, , Balkan, T., and Platin, B.E. A Complete Analysis for Pump Controlled Single Rod Actuators. 10th International Fluid Power Conference. pages 119--132. doi:10.13140/RG.2.2.13163.75046
[2] Donkov, V., Andersen, T., Pedersen, H., and Ebbesen, M. (2018). Donkov, V, , Andersen, T., Pedersen, H., and Ebbesen, M. Application of model predictive control in disrete displacement cylinders to drive a knuckle boom crane. submitted to the 10th Ph.D. Symposium on Fluid Power. .
[3] Hagen, D., Pawlus, W., Ebbesen, M.K., and Andersen, T.O. (2017). Hagen, D, , Pawlus, W., Ebbesen, M.K., and Andersen, T.O. Feasibility study of electromechanical cylinder drivetrain for offshore mechatronic systems. Modeling, Identification and Control. 38(2):59. doi:10.4173/mic.2017.2.2
[4] HedegaardHansen, A., FAsmussen, M., and Bech, M.M. (2018). HedegaardHansen, A, , FAsmussen, M., and Bech, M.M. Model predictive control of a wave energy converter with discrete fluid power power take-off system. Energies. 11(3):635. doi:10.3390/en11030635
[5] Huova, M., Aalto, A., Linjama, M., Huhtala, K., Lantela, T., and Pietola, M. (2017). Huova, M, , Aalto, A., Linjama, M., Huhtala, K., Lantela, T., and Pietola, M. Digital hydraulic multi-pressure actuator--the concept, simulation study and first experimental results. International Journal of Fluid Power. 18(3):141--152. doi:10.1080/14399776.2017.1302775
[6] Jaerf, A., Minav, T., and Pietola, M. (2016). Jaerf, A, , Minav, T., and Pietola, M. Nonsymmetrical Flow Compensation Using Hydraulic Accumulator. In Proceedings of the 9th FPNI Ph.D. Symposium on Fluid Power FPNI2016. pages 1--6. doi:10.1115/FPNI2016-1516
[7] Kogler, H. and Scheidl, R. (2016). Kogler, H, and Scheidl, R. Energy efficient linear drive axis using a hydraulic switching converter. Journal of Dynamic Systems, Measurement, and Control. 138(9):091010. doi:10.1115/1.4033412
[8] Linjama, M. and Huhtala, K. (2010). Linjama, M, and Huhtala, K. Digital hydraulic power management system--towards lossless hydraulics. In Proceedings of the Third Workshop on Digital Fluid Power. pages 13--14. .
[9] Linjama, M., Vihtanen, H.-P., Sipola, A., and Vilenius, M. (2009). Linjama, M, , Vihtanen, H.-P., Sipola, A., and Vilenius, M. Secondary controlled multi-chamber hydraulic cylinder. In The 11th Scandinavian International Conference on Fluid Power, SICFP, volume9. pages 2--4. .
[10] Michel, S. and Weber, J. (2012). Michel, S, and Weber, J. Energy-efficient electrohydraulic compact drives for low power applications. Fluid Power and Motion Control - FPMC 2012. pages 93--107. .
[11] Pedersen, H.C., Schmidt, L., Andersen, T.O., and Brask, M.H. (2014). Pedersen, H, C., Schmidt, L., Andersen, T.O., and Brask, M.H. Investigation of new servo drive concept utilizing two fixed displacement units. JFPS International Journal of Fluid Power System. 8(1):1--9. doi:10.5739/jfpsij.8.1
[12] Quan, Z., Quan, L., and Zhang, J. (2014). Quan, Z, , Quan, L., and Zhang, J. Review of energy efficient direct pump controlled cylinder electro-hydraulic technology. Renewable and Sustainable Energy Reviews. 35:336--346. doi:10.1016/j.rser.2014.04.036
[13] Rahmfeld, R. (2002). Rahmfeld, R, Development and Control of Energy Saving Hydraulic Servo Drives for Mobile Systems. Fortschrittberichte VDI / 12: Verkehrstechnik, Fahrzeugtechnik. VDI-Verlag. PhD. Dissertation. .
[14] Rexroth, B.A. (2010). Rexroth, B, A. RE10227. Internal gear pump, fixed displacement. Type PGH. 2010. https://dc-us.resource.bosch.com/media/us/products_13/product_groups_1/industrial_hydraulics_5/pdfs_4/re10227.pdf. .
[15] Rexroth, B.A. (2013). Rexroth, B, A. Internal gear pump PGH Fixed displacement Series 2X. 2013. https://dc-us.resource.bosch.com/media/us/products_13/product_groups_1/industrial_hydraulics_5/pdfs_4/re10223.pdf. .
[16] Schmidt, L., Groenkjaer, M., Pedersen, H.C., and Andersen, T.O. (2017). Schmidt, L, , Groenkjaer, M., Pedersen, H.C., and Andersen, T.O. Position Control of an Over-Actuated Direct Hydraulic Cylinder Drive. Control Engineering Practice. 64:1--14. doi:10.1016/J.CONENGPRAC.2017.04.003
[17] Schmidt, L., Roemer, D.B., Pedersen, H.C., and Andersen, T.O. (2015). Schmidt, L, , Roemer, D.B., Pedersen, H.C., and Andersen, T.O. Speed-variable switched differential pump system for direct operation of hydraulic cylinders. In ASME/BATH 2015 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers. doi:10.1115/FPMC2015-9575
[18] Vukovic, M., Leifeld, R., and Murrenhoff, H. (2016). Vukovic, M, , Leifeld, R., and Murrenhoff, H. Steam--a hydraulic hybrid architecture for excavators. In 10th International Fluid Power Conference (10. IFK). pages 151--162. .
[19] Willkomm, J., Wahler, M., and Weber, J. (2014). Willkomm, J, , Wahler, M., and Weber, J. Quadratic Programming to Optimize Energy Efficiency of Speed- and Displacement-Variable Pumps. In 8th FPNI Ph.D Symposium on Fluid Power. ASME. doi:10.1115/FPNI2014-7802


BibTeX:
@article{MIC-2018-2-3,
  title={{Energy Saving Potential in Knuckle Boom Cranes using a Novel Pump Controlled Cylinder Drive}},
  author={Ketelsen, Søren and Schmidt, Lasse and Donkov, Viktor Hristov and Andersen, Torben Ole},
  journal={Modeling, Identification and Control},
  volume={39},
  number={2},
  pages={73--89},
  year={2018},
  doi={10.4173/mic.2018.2.3},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.