**Page description appears here**

“Dynamic Modeling of a 2-RPU+2-UPS Hybrid Manipulator for Machining Application”

Authors: Ruiqin Li, Shusen Wang, Dabao Fan, Yuting Du and Shaoping Bai,
Affiliation: North University of China and Aalborg University
Reference: 2017, Vol 38, No 4, pp. 169-184.

     Valid XHTML 1.0 Strict


Keywords: gantry hybrid machine tool, 2-RPU+2-UPS, kinematics and dynamics modeling, large-scale structural part machining

Abstract: This paper presents a novel 5-DOF gantry hybrid machine tool, designed with a 2-RPU+2-UPS parallel mechanism for 3T2R motion. The 2-RPU+2-UPS parallel mechanism is connected to a long linear guide to realize 5-axis machining. A dynamic model is developed for this parallel-serial hybrid system. Screw theory is adopted to establish the kinematic equations of the system, upon which the dynamics model is developed by utilizing the principle of virtual work. A numerical example for processing slender structural parts is included to show the validity of the analytical dynamic model developed.

PDF PDF (6538 Kb)        DOI: 10.4173/mic.2017.4.2





References:
[1] Assal, S. F.M. (2015). Assal, S, F.M. A novel planar parallel manipulator with high orientation capability for a hybrid machine tool: kinematics, dimensional synthesis and performance evaluation. Robotica. 35(5):1031--1053. doi:10.1017/S0263574715000958
[2] Cheng, G. and Shan, X. (2012). Cheng, G, and Shan, X. Dynamics analysis of a parallel hip joint simulator with four degree of freedoms (3R1T). Nonlinear Dynamics. 70(4):2475--2486. doi:10.1007/s11071-012-0635-4
[3] Gallardo-Alvarado, J., Aguilar-NĘójera, C.R., Casique-Rosas, L., Rico-Martʬnez, J.M., and Islam, M.N. (2008). Gallardo-Alvarado, J, , Aguilar-NĘójera, C.R., Casique-Rosas, L., Rico-Martʬnez, J.M., and Islam, M.N. Kinematics and dynamics of 2(3-RPS) manipulators by means of screw theory and the principle of virtual work. Mechanism and Machine Theory. 43(10):1281--1294. doi:10.1016/j.mechmachtheory.2007.10.009
[4] Gallardo-Alvarado, J., Rodriguezcastro, R., Aguilarnajera, C.R., and Perezgonzalez, L. (2012). Gallardo-Alvarado, J, , Rodriguezcastro, R., Aguilarnajera, C.R., and Perezgonzalez, L. A novel six-degrees-of-freedom series-parallel manipulator. Journal of Mechanical Science and Technology. 26(6):1901--1909. doi:10.1007/s12206-012-0408-5
[5] Gao, Z. and Zhang, D. (2015). Gao, Z, and Zhang, D. Performance analysis, mapping, and multiobjective optimization of a hybrid robotic machine tool. Industrial Electronics IEEE Transactions on. 62(1):423--433. doi:10.1109/TIE.2014.2327008
[6] Horn, G. and Linge, S. (1995). Horn, G, and Linge, S. Analytical generation of the dynamical equations for mechanical manipulators. Modeling Identification and Control. 16(3):155--167. doi:10.4173/mic.1995.3.4
[7] Hu, B., Lu, Y., Tan, Q., Yu, J., and Han, J. (2011). Hu, B, , Lu, Y., Tan, Q., Yu, J., and Han, J. Analysis of stiffness and elastic deformation of a 2(SP+SPR+SPU) serial-parallel manipulator. Robotics and Computer-integrated Manufacturing. 27(2):418--425. doi:10.1016/j.rcim.2010.09.002
[8] Hu, B., Lu, Y., Yu, J., and Zhuang, S. (2012). Hu, B, , Lu, Y., Yu, J., and Zhuang, S. Analyses of inverse kinematics, statics and workspace of a novel 3RPS-3SPR serial-parallel manipulator. The Open Mechanical Engineering Journal. 6(Suppl.1):65--72. doi:10.2174/1874155X01206010065
[9] Hu, B. and Yu, J. (2015). Hu, B, and Yu, J. Unified solving inverse dynamics of 6-DOF serialĘcparallel manipulators. Applied Mathematical Modelling. 39(16):4715--4732. doi:10.1016/j.apm.2015.04.020
[10] Huang, P., Wang, J., Wang, L., and Yao, R. (2011). Huang, P, , Wang, J., Wang, L., and Yao, R. Kinematical calibration of a hybrid machine tool with regularization method. International Journal of Machine Tools and Manufacture. 51(3):210--220. doi:10.1016/j.ijmachtools.2010.11.009
[11] Huang, T., Wang, P., Zhao, X., and Chetwynd, D.G. (2010). Huang, T, , Wang, P., Zhao, X., and Chetwynd, D.G. Design of a 4-DOF hybrid pkm module for large structural component assembly. Cirp Annals-manufacturing Technology. 59(1):159--162. doi:10.1016/j.cirp.2010.03.098
[12] Jalon, J. G.d. and Bayo, E. (1994). Jalon, J, G.d. and Bayo, E. Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge. Springer-Verlag New York, Inc., Secaucus, NJ, USA. .
[13] Jiang, Y., Li, T., and Wang, L. (2015). Jiang, Y, , Li, T., and Wang, L. Dynamic modeling and redundant force optimization of a 2-DOF parallel kinematic machine with kinematic redundancy. Robotics and Computer-integrated Manufacturing. 32:1--10. doi:10.1016/j.rcim.2014.08.001
[14] Khalil, W. and Ibrahim, O. (2007). Khalil, W, and Ibrahim, O. General solution for the dynamic modeling of parallel robots. Journal of Intelligent and Robotic Systems. 49(1):19--37. doi:10.1007/s10846-007-9137-x
[15] Li, Y., Wang, J., Liu, X.J., and Wang, L.P. (2010). Li, Y, , Wang, J., Liu, X.J., and Wang, L.P. Dynamic performance comparison and counterweight optimization of two 3-DOF parallel manipulators for a new hybrid machine tool. Mechanism and Machine Theory. 45(11):1668--1680. doi:10.1016/j.mechmachtheory.2010.06.009
[16] Lian, B., Sun, T., Song, Y., Jin, Y., and Price, M. (2015). Lian, B, , Sun, T., Song, Y., Jin, Y., and Price, M. Stiffness analysis and experiment of a novel 5-DOF parallel kinematic machine considering gravitational effects. International Journal of Machine Tools and Manufacture. 95:82--96. doi:10.1016/j.ijmachtools.2015.04.012
[17] Liang, C. and Ceccarelli, M. (2012). Liang, C, and Ceccarelli, M. Design and simulation of a waist-trunk system for a humanoid robot. Mechanism and Machine Theory. 53:50--65. doi:10.1016/j.mechmachtheory.2012.02.009
[18] Liu, S. and Yu, Y. (2008). Liu, S, and Yu, Y. Dynamic design of a planar 3-DOF parallel manipulator. Chinese Journal of Mechanical Engineering. 44(04):47. doi:10.3901/JME.2008.04.047
[19] Lu, Y., Wang, P., Hou, Z., Hu, B., Sui, C., and Han, J. (2014). Lu, Y, , Wang, P., Hou, Z., Hu, B., Sui, C., and Han, J. Kinetostatic analysis of a novel 6-DoF 3UPS parallel manipulator with multi-fingers. Mechanism and Machine Theory. 78:36--50. doi:10.1016/j.mechmachtheory.2014.02.017
[20] Lyzell, C. and Hovland, G. (2007). Lyzell, C, and Hovland, G. Verification of the dynamics of the 5-DOF gantry-tau parallel kinematic machine. In Iasted International Conference on Robotics and Applications. pages 445--450. .
[21] Merlet, J.P. (2002). Merlet, J, P. Parallel Robots. Kluwer Academic Publishers,The Netherlands. .
[22] Pashkevich, A., Chablat, D., and Wenger, P. (2009). Pashkevich, A, , Chablat, D., and Wenger, P. Stiffness analysis of overconstrained parallel manipulators. Mechanism and Machine Theory. 44(5):966--982. doi:10.1016/j.mechmachtheory.2008.05.017
[23] Pisla, D., Gherman, B., Vaida, C., Suciu, M., and Plitea, N. (2013). Pisla, D, , Gherman, B., Vaida, C., Suciu, M., and Plitea, N. An active hybrid parallel robot for minimally invasive surgery. Robotics and Computer-integrated Manufacturing. 29(4):203--221. doi:10.1016/j.rcim.2012.12.004
[24] Sokolov, A. and Xirouchakis, P. (2007). Sokolov, A, and Xirouchakis, P. Dynamics analysis of a 3-DOF parallel manipulator with RĘCPĘCS joint structure. Mechanism and Machine Theory. 42(5):541--557. doi:10.1016/j. mechmachtheory. 2006.05.004
[25] Vaida, C., Pisla, D., Plitea, N., Gherman, B., Gyurka, B., Graur, F., and Vlad, L. (2010). Vaida, C, , Pisla, D., Plitea, N., Gherman, B., Gyurka, B., Graur, F., and Vlad, L. Development of a voice controlled surgical robot. 2010. pages 567--574. doi:10.1007/978-90-481-9689-0_65
[26] Wu, G. and Bai, S. (2016). Wu, G, and Bai, S. Design analysis and dynamic modeling of a high-speed 3T1R parallel robot for pick-and-place application. International Journal of Mechanisms and Robotic Systems. 3(2/3):237. doi:10.1504/IJMRS.2016.10001895
[27] Wu, G., Bai, S., and Kepler, J. (2015). Wu, G, , Bai, S., and Kepler, J. Stiffness characterization of a 3-PPR planar parallel manipulator with actuation compliance. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science 1989-1996 (vols 203-210), 2015. 229(12). doi:10.1177/0954406214557341
[28] Wu, G., Caro, S., Bai, S., and Kepler, J. (2014). Wu, G, , Caro, S., Bai, S., and Kepler, J. Dynamic modeling and design optimization of a 3-DOF spherical parallel manipulator. Robotics and Autonomous Systems. 62(10):1377 -- 1386. doi:10.1016/j.robot.2014.06.006
[29] Wu, J., Wang, D., and Wang, L. (2015). Wu, J, , Wang, D., and Wang, L. A control strategy of a two degrees-of-freedom heavy duty parallel manipulator. Journal of Dynamic Systems Measurement and Control, 2015. 137(6):061007. doi:10.1115/1.4029244
[30] Zhang, D., Bi, Z., and Li, B. (2009). Zhang, D, , Bi, Z., and Li, B. Design and kinetostatic analysis of a new parallel manipulator. Robotics and Computer Integrated Manufacturing. 25(4):782--791. doi:10.1016/j.rcim.2008.10.002
[31] Zhao, Yongjie, Gao, and Feng. (2009). Zhao, Yongjie, Gao, and Feng, Inverse dynamics of the 6-dof out-parallel manipulator by means of the principle of virtual work. Robotica. 27(2):259--268. doi:10.1017/S0263574708004657


BibTeX:
@article{MIC-2017-4-2,
  title={{Dynamic Modeling of a 2-RPU+2-UPS Hybrid Manipulator for Machining Application}},
  author={Li, Ruiqin and Wang, Shusen and Fan, Dabao and Du, Yuting and Bai, Shaoping},
  journal={Modeling, Identification and Control},
  volume={38},
  number={4},
  pages={169--184},
  year={2017},
  doi={10.4173/mic.2017.4.2},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.