**Page description appears here**

“Comparison of Excitation Signals in Active Magnetic Bearing System Identification”

Authors: Jouni Vuojolainen, Niko Nevaranta, Rafal Jastrzebski and Olli Pyrhönen,
Affiliation: Lappeenranta University of Technology
Reference: 2017, Vol 38, No 3, pp. 123-133.

     Valid XHTML 1.0 Strict


Keywords: Active magnetic bearings (AMB), magnetic levitation, chirp signal, frequency-domain analysis, multisine, pseudorandom binary sequence (PRBS), stepped sine, system identification

Abstract: Active magnetic bearings (AMBs) offer frictionless suspension, vibration insulation, programmable stiffness, and damping, among other advantages, in levitated rotor applications. However, AMBs are inherently unstable and require accurate system models for the high-performance model-based multi-input multi-output control of rotor position. Control electronics with high calculation capacity and accurate sensors of AMBs provide an opportunity to implement various identification schemes. A variety of artificial excitation signal-based identification methods can thus be achieved with no additional hardware. In this paper, a selection of excitation signals, namely the pseudorandom binary sequence (PRBS), chirp signal, multisine, and stepped sine are presented, applied, and compared with the AMB system identification. From the identification experiments, the rotor-bearing system, the inner current control loop, and values of position and current stiffness are identified. Unlike recently published works considering excitation-based identification of AMB rotor systems, it is demonstrated that identification of the rotor system dynamics can be carried out using various well-established excitation signals. Application and feasibility of these excitation signals in AMB rotor systems are analyzed based on experimental results.

PDF PDF (1358 Kb)        DOI: 10.4173/mic.2017.3.2





References:
[1] Aenis, M., Knopf, E., and Nordmann, R. (2002). Aenis, M, , Knopf, E., and Nordmann, R. Active magnetic bearings for the identification and fault diagnosis in turbomachinery. Mechatronics. 12(8):1011--1021. doi:10.1016/S0957-4158(02)00009-0
[2] Ahn, H.-J., Lee, S.-W., Lee, S.-H., and Han, D.-C. (2003). Ahn, H, -J., Lee, S.-W., Lee, S.-H., and Han, D.-C. Frequency domain control-relevant identification of mimo amb rigid rotor. Automatica. 39(2):299 -- 307. doi:10.1016/S0005-1098(02)00203-0
[3] Fang, J., Zheng, S., and Han, B. (2013). Fang, J, , Zheng, S., and Han, B. Amb vibration control for structural resonance of double-gimbal control moment gyro with high-speed magnetically suspended rotor. IEEE/ASME Trans. Mech.. 18(1):32--43. doi:10.1109/TMECH.2011.2161877
[4] Gahler, C., Mohler, M., and Herzog, R. (1997). Gahler, C, , Mohler, M., and Herzog, R. Multivariable identification of active magnetic bearing systems. JSME International Journal Series C. 40(4):584--592. doi:10.1299/jsmec.40.584
[5] Garcia, J., Gomes, A., and Stephan, R. (2016). Garcia, J, , Gomes, A., and Stephan, R. Performance assessment of a self-bearing motor: an application of iso 14839. In Proc. of 14th Int. Symp. on Mag. Bear. (ISMB). pages 155--158. .
[6] Hynynen, K. (2011). Hynynen, K, Broadband excitation in the system identification of active magnetic bearing rotor systems. Ph.D. thesis, Lappeenranta University of Technology, Lappeenranta, Finland. .
[7] Hynynen, K. and Jastrzebski, R.P. (2009). Hynynen, K, and Jastrzebski, R.P. Optimized excitation signals in amb rotor system identification. In IASTED Int. Conf. of Ident., Contr. and Appl. pages 1--6, 2009. .
[8] Hynynen, K., Jastrzebski, R.P., and Smirnov, A. (2010). Hynynen, K, , Jastrzebski, R.P., and Smirnov, A. Experimental analysis of frequency response function estimation methods for active magnetic bearing rotor system. In Proc. of 12th Int. Symp. on Mag. Bear. (ISMB). pages 40--46. .
[9] Inman, D.J., Kasarda, M., Quinn, D., Bash, T., Mani, G., Kirk, R., and Sawicki, J.T. (2005). Inman, D, J., Kasarda, M., Quinn, D., Bash, T., Mani, G., Kirk, R., and Sawicki, J.T. Magnetic bearings for non-destructive health monitoring of rotating machinery supported in conventional bearings. In Dam. Assess. of Struct. VI, volume 293. pages 383--390, 2005. doi:10.4028/www.scientific.net/KEM.293-294.383
[10] Jastrzebski, R., Sillanpaa, T., Jaatinen, P., Smirnov, A., Vuojolainen, J., Lindh, T., Laiho, A., and Pyrhonen, O. (2016). Jastrzebski, R, , Sillanpaa, T., Jaatinen, P., Smirnov, A., Vuojolainen, J., Lindh, T., Laiho, A., and Pyrhonen, O. Automated design of amb rotor systems with standard drive, control software and hardware technologies. In Proc. of 15th Int. Symp. on Mag. Bear. (ISMB). pages 78--85, 2016. .
[11] Jastrzebski, R.P., Vuojolainen, J., Jaatinen, P., Sillanpaeae, T., and Pyrhonen, O. (2016). Jastrzebski, R, P., Vuojolainen, J., Jaatinen, P., Sillanpaeae, T., and Pyrhonen, O. Commissioning of modular 10kw magnetically levitated test rig. In 19th Int. Conf. on Elecl. Mach. and Syst. (ICEMS). pages 1--6, 2016. .
[12] Kim, C.-S. and Lee, C.-W. (1997). Kim, C, -S. and Lee, C.-W. In situ runout identification in active magnetic bearing system by extended influence coefficient method. IEEE/ASME Trans. Mech.. 2(1):51--57. doi:10.1109/3516.558858
[13] Kulesza, Z. (2014). Kulesza, Z, Dynamic behavior of cracked rotor subjected to multisine excitation. Journal of Sound and Vibration. 333(5):1369 -- 1378. http://www.sciencedirect.com/science/article/pii/S0022460X13009048, doi:10.1016/j.jsv.2013.10.031
[14] Lanzon, A. and Tsiotras, P. (2005). Lanzon, A, and Tsiotras, P. A combined application of h infin; loop shaping and mu;-synthesis to control high-speed flywheels. IEEE Trans. Control Syst. Technol.. 13(5):766--777. doi:10.1109/TCST.2005.847344
[15] Larsonneur, R. (2009). Larsonneur, R, Principle of Active Magnetic Suspension, pages 27--68. Springer Berlin Heidelberg, Berlin, Heidelberg. http://dx.doi.org/10.1007/978-3-642-00497-1_2, doi:10.1007/978-3-642-00497-1_2
[16] Noshadi, A., Shi, J., Lee, W.S., Shi, P., and Kalam, A. (2016). Noshadi, A, , Shi, J., Lee, W.S., Shi, P., and Kalam, A. System identification and robust control of multi-input multi-output active magnetic bearing systems. IEEE Trans. Contr. Syst. Tech.. 24(4):1227--1239. doi:10.1109/TCST.2015.2480009
[17] Pintelon, R. and Schoukens, J. (2012). Pintelon, R, and Schoukens, J. Design of Excitation Signals, pages 151--175. Wiley-IEEE Press. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6198975, doi:10.1002/9781118287422.ch5
[18] Quinn, D.D., Mani, G., Kasarda, M. E.F., Bash, T., Inman, D.J., and Kirk, R.G. (2005). Quinn, D, D., Mani, G., Kasarda, M. E.F., Bash, T., Inman, D.J., and Kirk, R.G. Damage detection of a rotating cracked shaft using an active magnetic bearing as a force actuator - analysis and experimental verification. IEEE/ASME Trans. Mech.. 10(6):640--647. doi:10.1109/TMECH.2005.859833
[19] Schuhmann, T., Hofmann, W., and Werner, R. (2012). Schuhmann, T, , Hofmann, W., and Werner, R. Improving operational performance of active magnetic bearings using kalman filter and state feedback control. IEEE Trans. Ind. Electron.. 59(2):821--829. doi:10.1109/TIE.2011.2161056
[20] Smirnov, A. (2012). Smirnov, A, AMB system for high-speed motors using automatic commissioning. Ph.D. thesis, Lappeenranta University of Technology, Lappeenranta, Finland. .
[21] Tang, E., Han, B., and Zhang, Y. (2016). Tang, E, , Han, B., and Zhang, Y. Optimum compensator design for the flexible rotor in magnetically suspended motor to pass the first bending critical speed. IEEE Trans. Ind. Electron.. 63(1):343--354. doi:10.1109/TIE.2015.2472534
[22] Tiwiri, R. and Chougale, A. (2014). Tiwiri, R, and Chougale, A. Identification of bearing dynamic parameters and unbalance states in a flexible rotor system fully levitated on active magnetic bearings. Mechatronics. 24(3):1011--1021. doi:10.1016/j.mechatronics.2014.02.010
[23] Vuojolainen, J., Jastrzebski, R., and Pyrhonen, O. (2016). Vuojolainen, J, , Jastrzebski, R., and Pyrhonen, O. Using a pseudorandom binary sequence for rotor-bearing system identification in active magnetic bearing rotor systems. In Proc. of 15th Int. Symp. on Mag. Bear. (ISMB). pages 618--625. .
[24] Wroblewski, A., Sawicki, J., and Pesch, A. (2012). Wroblewski, A, , Sawicki, J., and Pesch, A. Rotor model updating and validation for an active magnetic bearing based high-speed machining spindle. ASME. J. Eng. Gas Turbines Power. 134(12):1--6. doi:10.1115/1.4007337


BibTeX:
@article{MIC-2017-3-2,
  title={{Comparison of Excitation Signals in Active Magnetic Bearing System Identification}},
  author={Vuojolainen, Jouni and Nevaranta, Niko and Jastrzebski, Rafal and Pyrhönen, Olli},
  journal={Modeling, Identification and Control},
  volume={38},
  number={3},
  pages={123--133},
  year={2017},
  doi={10.4173/mic.2017.3.2},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.