**Page description appears here**

“A Decoupled Approach for Flight Control”

Authors: Espen Oland and Raymond Kristiansen,
Affiliation: The Arctic University of Norway
Reference: 2016, Vol 37, No 4, pp. 237-246.

     Valid XHTML 1.0 Strict


Keywords: Decoupling, flight control, unmanned aerial vehicle, quaternions, nonlinear control

Abstract: A decoupling method for flight control is presented that greatly simplifies the controller design. By approximating the higher order derivatives of the angle of attack and sideslip, it enables a rotation controller and a speed controller to be derived independently of each other, and thus gives access to a vast number of controller solutions derived for general classes of rotational and translational systems. For rotational control, a quaternion-based sliding surface controller is derived to align the wind frame in a desired direction, and using standard Lyapunov methods an airspeed controller is derived to ensure that an unmanned aerial vehicle moves with a positive airspeed. Simulations validate the potential of the proposed method, where the unmanned aerial vehicle is able to obtain leveled flight and move in a desired direction with a desired airspeed.

PDF PDF (685 Kb)        DOI: 10.4173/mic.2016.4.4





References:
[1] Borhaug, E. and Pettersen, K.Y. (2005). Borhaug, E, and Pettersen, K.Y. Cross-track control for underactuated autonomous vehicles. In Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain. doi:10.1109/CDC.2005.1582222
[2] Campa, G., Gu, Y., Seanor, B., Napolitano, M.R., Pollini, L., and Fravolini, M.L. (2007). Campa, G, , Gu, Y., Seanor, B., Napolitano, M.R., Pollini, L., and Fravolini, M.L. Design and flight-testing of non-linear formation control laws. Control Engineering Practice. Vol. 15:pp. 1077--1092. doi:10.1016/j.conengprac.2007.01.004
[3] Egeland, O. and Gravdahl, J.T. (2002). Egeland, O, and Gravdahl, J.T. Modeling and simulation for automatic control. Marine Cybernetics, Trondheim, Norway, ISBN 82-92356-01-0. .
[4] Etkin, B. (1972). Etkin, B, Dynamics of atmospheric flight. Dover Publications, Inc., ISBN0-486-44522-4. .
[5] Farrell, J., Sharma, M., and Polycarpou, M. (2005). Farrell, J, , Sharma, M., and Polycarpou, M. Backstepping-based flight control with adaptive function approximation. Journal of Guidance, Control, and Dynamics. 28, no. 6:1089--1101. doi:10.2514/1.13030
[6] Fossen, T.I. (2011). Fossen, T, I. Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons Ltd., ISBN: 978-1-119-99149-6. .
[7] Fossen, T.I., Breivik, M., and Skjetne, R. (2003). Fossen, T, I., Breivik, M., and Skjetne, R. Line-of-sight path following of underactuated marine craft. In Proceedings of the 6th IFAC MCMC. Girona, Spain. www.fossen.biz/home/papers/FossenBreivikSkjetneMCMC03.pdf. .
[8] Hamilton, W.R. (1844). Hamilton, W, R. On quaternions: or a new system of imaginaries in algebra. Philosophical Magazine. Vol. 25:pp. 489--495. doi:10.1080/14786444608645590
[9] Khalil, H.K. (2002). Khalil, H, K. Nonlinear systems. 3rd ed., Prentice Hall, ISBN 0-13-067389-7. .
[10] Kristiansen, R., Loria, A., Chaillet, A., and Nicklasson, P.J. (2009). Kristiansen, R, , Loria, A., Chaillet, A., and Nicklasson, P.J. Spacecraft relative rotation tracking without angular velocity measurements. Automatica. Vol. 45, No. 3:pp. 750--756. doi:10.1016/j.automatica.2008.10.012
[11] Lee, T. and Kim, Y. (2001). Lee, T, and Kim, Y. Nonlinear adaptive flight control using backstepping and neural networks controller. Journal of Guidance, Control and Dynamics. Vol. 24, No. 4:pp. 675--682. doi:10.2514/2.4794
[12] Loria, A. and Panteley, E. (2002). Loria, A, and Panteley, E. Uniform exponential stability of linear time-varying systems: revisited. System & Control Letters. Vol. 47, No. 1:pp. 13--24. doi:10.1016/S0167-6911(02)00165-2
[13] Oland, E., Andersen, T.S., and Kristiansen, R. (2016). Oland, E, , Andersen, T.S., and Kristiansen, R. Subsumption architecture applied to flight control using composite rotations. Automatica. Vol. 69:pp. 195--200. doi:10.1016/j.automatica.2016.02.034
[14] Oland, E. and Kristiansen, R. (2014). Oland, E, and Kristiansen, R. Trajectory tracking of an underactuated fixed-wing UAV. In Proceedings of the ICNPAA Congress on Mathematical problems in engineering, aerospace and sciences. Narvik, Norway. doi:10.1063/1.4907300
[15] Oland, E., Schlanbusch, R., and Kristiansen, R. (2013). Oland, E, , Schlanbusch, R., and Kristiansen, R. Underactuated waypoint tracking of a fixed-wing UAV. In Proceedings of the 2nd RED-UAS. Compiegne, France. doi:10.3182/20131120-3-FR-4045.00007
[16] Reyhanoglu, M., vander Schaft, A., McClamroch, N.H., and Kolmanovsky, I. (1999). Reyhanoglu, M, , vander Schaft, A., McClamroch, N.H., and Kolmanovsky, I. Dynamics and control of a class of underactuated mechanical systems. IEEE Transactions on Automatic Control. Vol. 44, No. 9:pp. 1663--1671. doi:10.1109/9.788533
[17] Schlanbusch, R., Grotli, E., Loria, A., and Nicklasson, P.J. (2011). Schlanbusch, R, , Grotli, E., Loria, A., and Nicklasson, P.J. Hybrid attitude tracking of output feedback controlled rigid bodies. In Proceedings of the 50th IEEE Conference on Decision and Control. Orlando, FL, USA. doi:10.1109/CDC.2011.6161517
[18] Schlanbusch, R., Loria, A., and Nicklasson, P.J. (2012). Schlanbusch, R, , Loria, A., and Nicklasson, P.J. On the stability and stabilization of quaternion equilibria of rigid bodies. Automatica. Vol. 48, No. 12:pp. 3135--3141. doi:10.1016/j.automatica.2012.08.012
[19] Slotine, J. J.E. and Li, W. (1987). Slotine, J, J.E. and Li, W. On the adaptive control of robot manipulators. International Journal of Robotics Research. Vol. 6, No. 3:pp. 49--59. doi:10.1177/027836498700600303
[20] Sonneveldt, L., van Oort, E.R., Chu, Q.P., and Mulder, J.A. (2009). Sonneveldt, L, , van Oort, E.R., Chu, Q.P., and Mulder, J.A. Nonlinear adaptive trajectory control applied to an F-16 model. Journal of Guidance, Control and Dynamics. Vol. 32, No. 1:pp. 25--39. doi:10.2514/1.38785
[21] Stengel, R.F. (2004). Stengel, R, F. Flight dynamics. Princeton University Press, ISBN 0-691-11407-2. .
[22] Stevens, B.L. and Lewis, F.L. (2003). Stevens, B, L. and Lewis, F.L. Aircraft control and simulation. 2nd ed., Wiley, ISBN 978-0-471-37145-8. .
[23] Tayebi, A. and McGilvray, S. (2006). Tayebi, A, and McGilvray, S. Attitude stabilization of a VTOL quadrotor aircraft. IEEE Transaction on Control Systems Technology. Vol. 14, No. 3:pp. 562--571. doi:10.1109/TCST.2006.872519


BibTeX:
@article{MIC-2016-4-4,
  title={{A Decoupled Approach for Flight Control}},
  author={Oland, Espen and Kristiansen, Raymond},
  journal={Modeling, Identification and Control},
  volume={37},
  number={4},
  pages={237--246},
  year={2016},
  doi={10.4173/mic.2016.4.4},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.