**Page description appears here**

“Multicopter Design Optimization and Validation”

Authors: Řyvind Magnussen, Morten Ottestad and Geir Hovland,
Affiliation: University of Agder
Reference: 2015, Vol 36, No 2, pp. 67-79.

     Valid XHTML 1.0 Strict

Keywords: Multicopter, multirotor, drone, UAV, mathematical modeling, design optimization, experimental validation

Abstract: This paper presents a method for optimizing the design of a multicopter unmanned aerial vehicle (UAV, also called multirotor or drone). In practice a set of datasheets is available to the designer for the various components such as battery pack, motor and propellers. The designer can not normally design the parameters of the actuator system freely, but is constrained to pick components based on available datasheets. The mixed-integer programming approach is well suited to design optimization in such cases when only a discrete set of components is available. The paper also includes an experimental section where the simulated dynamic responses of optimized designs are compared against the experimental results. The paper demonstrates that mixed-integer programming is well suited to design optimization of multicopter UAVs and that the modeling assumptions match well with the experimental validation.

PDF PDF (1072 Kb)        DOI: 10.4173/mic.2015.2.1

DOI forward links to this article:
  [1] Mark O. Milhouse (2015), doi:10.1145/2808062.2808075
  [2] Witold Pawlus, Geir Hovland, Martin Choux, Damian Frick and Manfred Morari (2015), doi:10.1109/IECON.2015.7392307
  [3] Hemjyoti Das, Venkatesh Baskaran and Hemendra Arya (2016), doi:10.1109/ICCICCT.2016.7988001
  [4] Maxim Tyan, Nhu Van Nguyen, Sangho Kim and Jae-Woo Lee (2017), doi:10.1016/j.ast.2017.09.008
  [5] Umang Agarwal (2017), doi:10.1109/ISED.2017.8303947
  [6] Al Al, Arfita Yuana Dewi, Taufal Hidayat, T. Baaken, P. van der Sijde, G. Maas, Zaidir and M. Yahya (2018), doi:10.1051/matecconf/201821501013
  [7] Guang-Xun Du and Quan Quan (2019), doi:10.2514/1.C035150
  [8] Xunhua Dai, Quan Quan, Jinrui Ren and Kai-Yuan Cai (2019), doi:10.1109/TIE.2018.2885715
  [9] Z.J. Chen, K.A. Stol and P.J. Richards (2019), doi:10.1016/j.ast.2019.06.038
  [10] Xiang He, Joseph R. Bourne, Jake A. Steiner, Cole Mortensen, Kyle C. Hoffman, Christopher J. Dudley, Ben Rogers, Donald M. Cropek and Kam K. Leang (2019), doi:10.1109/JSYST.2019.2905807
  [11] Marcin Biczyski, Rabia Sehab, James F. Whidborne, Guillaume Krebs and Patrick Luk (2020), doi:10.1155/2020/9689604
  [12] Tao Du, Adriana Schulz, Bo Zhu, Bernd Bickel and Wojciech Matusik (2016), doi:10.1145/2980179.2982427

[1] Amazon. (2015). Prime Air, http://www.amazon.com/b?node=8037720011, Accessed: 2015-04-07.
[2] Bemporad, A. and Morari, M. (1999). Control of systems integrating logic, dynamics, and constraints, Automatica. 35(3):407--427. doi:10.1016/S0005-1098(98)00178-2
[3] Clausen, J. (1999). Branch and bound algorithms - principles and examples, http://www.diku.dk/OLD/undervisning/2003e/datV-optimer/JensClausenNoter.pdf, 1999. Accessed: 2015-04-07.
[4] Hehn, M. and D'Andrea, R. (2014). A frequency domain iterative learning algorithm for high-performance, periodic quadrocopter maneuvers, Mechatronics. 24(8):954--965. doi:10.1016/j.mechatronics.2014.09.013
[5] HobbyKing. (2015). Online shop, http://www.hobbyking.com, Accessed: 2015-04-07.
[6] IBM. (2015). CPLEX Optimizer, http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer, 2015. Accessed: 2015-04-07.
[7] Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming, Combinatorica. 4(4):373--395. doi:10.1007/bf02579150
[8] Magnussen, O., Hovland, G., and Ottestad, M. (2014). Multicopter UAV Design Optimization, In Proc. IEEE/ASME Intl. Conf. on Mechatronic and Embedded Systems and Applications. 2014. doi:10.1109/MESA.2014.6935598
[9] Mignone, D. (2002). The really big collection of logic propositions and linear inequalities, Technical Report AUT01-11, ETH Zurich.
[10] Tyapin, I. and Hovland, G. (2009). Kinematic and Elastostatic Design Optimisation of the 3-DOF Gantry-Tau Parallel Kinematic Manipulator, Modeling, Identification and Control. 30(2):39--56. doi:10.4173/mic.2009.2.1
[11] Whitney, D. (1969). Optimum step size control for Newton-Raphson solution of nonlinear vector equations, Automatic Control, IEEE Transactions on. 14(5):572--574. ewbloc doi:10.1109/TAC.1969.1099261

  title={{Multicopter Design Optimization and Validation}},
  author={Magnussen, Řyvind and Ottestad, Morten and Hovland, Geir},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}


Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.

July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.

Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.

Jan 2012: Follow MIC on your smartphone by using the RSS feed.


July 2011: MIC passes 1000 ISI Web of Science citations.

Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.

Dec 2009: A MIC group is created at LinkedIn and Twitter.

Oct 2009: MIC is now fully updated in ISI Web of Knowledge.