**Page description appears here**

“Gear fatigue damage for a 500 kW wind turbine exposed to increasing turbulence using a flexible multibody model”

Authors: Martin Felix Jørgensen, Niels Leergaard Pedersen and Jens Nørkær Sørensen,
Affiliation: Technical University of Denmark
Reference: 2014, Vol 35, No 2, pp. 109-125.

     Valid XHTML 1.0 Strict


Keywords: gearbox, geartooth, gearteeth, turbulence, multibody, wind turbine, fatigue

Abstract: This paper investigates gear tooth fatigue damage in a 500 kW wind turbine using FLEX5 and own multibody code. FLEX5 provides the physical wind field, rotor and generator torque and the multibody code is used for obtaining gear tooth reaction forces in the planetary gearbox. Different turbulence levels are considered and the accumulated fatigue damage levels are compared. An example where the turbulence/fatigue sensitivity could be important, is in the middle of a big wind farm. Interior wind turbines in large wind farms will always operate in the wake of other wind turbines, causing increased turbulence and therefore increased fatigue damage levels. This article contributes to a better understanding of gear fatigue damage when turbulence is increased (e.g. in the center of large wind farms or at places where turbulence is pronounced).

PDF PDF (2064 Kb)        DOI: 10.4173/mic.2014.2.4





References:
[1] Boyer, H.E. (1986). Atlas of fatigue curves, ASM International.
[2] Dong, W., Xing, Y., Moan, T., and Gao, Z. (2012). Time domain-based gear contact fatigue analysis of a wind turbine drivetrain under dynamic conditions, International Journal of Fatigue. doi:10.1016/j.ijfatigue.2012.10.011
[3] Fernandes, P. and McDuling, C. (1997). Surface contact fatigue failures in gears, Engineering Failure Analysis. 4(2):99--107. doi:10.1016/S1350-6307(97)00006-X
[4] Geradin, M. and Cardona, A. (2001). Flexible multibody dynamics: a finite element approach, John Wiley.
[5] Hansen, K.S. and Larsen, G.C. (1997). Database of wind characteristics: http://www, winddata.com. 1997-2011. http://www.winddata.com/.
[6] Hasager, C.B., Rasmussen, L., Pena, A., Jensen, L.E., and Rethore, P.-E. (2013). Wind farm wake: The horns rev photo case, Energies. 6(2):696--716. doi:10.3390/en6020696
[7] Haug, E.J. (1989). Computer Aided Kinematics and Dynamics of Mechanical Systems: Vol, I: Basic Methods. Allyn and Bacon.
[8] Heege, A., Betran, J., and Radoveic, Y. (2007). Fatigue load computation of wind turbine gearboxes by coupled finite element, multi-body system and aerodynamic analysis, Wind Energy. 10(5):395--413. doi:10.1002/we.226
[9] Hirsch, T., Wohlfahrt, H., and Macherauch, E. (1987). Fatigue strength of case hardened and shot peened gears, (retroactive coverage). Shot Peening: Science, Technology. pages 547--560.
[10] Jørgensen, M.F., Pedersen, N.L., and Sørensen, J.N. (2014). Comparison and implementation of a rigid and a flexible multibody planetary gearbox model, Modeling, Identification and Control, 2014. 35(2):59--77. doi:10.4173/mic.2014.2.1
[11] Jørgensen, M.F., Pedersen, N.L., Sørensen, J.N., and Paulsen, U.S. (2014). Rigid matlab drivetrain model of a 500 kw wind turbine for predicting maximum gear tooth stresses in a planetary gearbox using multibody gear constraints, Wind Energy, 2014. 17(11):1659--1676. doi:10.1002/we.1660
[12] Madsen, P. (1990). Recommended practices for wind turbine testing and evaluation; 3, Fatigue Loads, volume2. 1990.
[13] Mann, J. (1998). Wind field simulation, Probabilistic Engineering Mechanics. 13(4):269--282. doi:10.1016/S0266-8920(97)00036-2
[14] Miner, M.A. (1945). Cumulative damage in fatigue, Journal of applied mechanics 12, no. 3. pages 159--164.
[15] Molinas, M., Suul, J.A., and Undeland, T. (2010). Extending the life of gear box in wind generators by smoothing transient torque with statcom, IEEE Transactions on Industrial Electronics. 57(2):476--484. doi:10.1109/TIE.2009.2035464
[16] Multiphysics, C. (1998). www, comsol.se. 1998-2012.
[17] Musial, W., Butterfield, S., and McNiff, B. (2007). Improving wind turbine gearbox reliability, In Proceedings of the European Wind Energy Conference. 2007.
[18] Niederstucke, B., Anders, A., Dalhoff, P., and Grzybowski, R. (2003). Load data analysis for wind turbine gearboxes, Final Report of Enhanced Life Analysis of Wind Power Systems, 2003.
[19] Nikravesh, P.E. (1988). Computer-Aided Analysis of Mechanical Systems, volume 186, Prentice Hall.
[20] Norton, R.L. (2000). Machine Design: An Integrated Approach, 2nd ed, Prentice-Hall.
[21] Palmgren, A. (1924). Die lebensdauer von kugellagern, Zeitschrift des Vereins Deutscher Ingenieure 68.14. pages 339--341.
[22] Pedersen, N.L. and Jørgensen, M.F. (2014). On gear teeth stiffness evaluation, Computers and Structures, vol. 135, p. 109-117.. doi:10.1016/j.compstruc.2014.01.023
[23] Schlechtingen, M., Santos, I., and Achiche, S. (2013). Wind turbine condition monitoring based on scada data using normal behavior models, Applied Soft Computing. 13:259--270. doi:10.1016/j.asoc.2012.08.033
[24] Seguro, J. and Lambert, T. (2000). Modern estimation of the parameters of the weibull wind speed distribution for wind energy analysis, Journal of Wind Engineering and Industrial Aerodynamics. 85(1):75 -- 84. doi:10.1016/S0167-6105(99)00122-1
[25] Shabana, A.A. (1989). Dynamics of Multibody Systems, Wiley & Sons.
[26] Smolders, K., Long, H., Feng, Y., and Tavner, P. (2010). Reliability analysis and prediction of wind turbine gearboxes, In European Wind Energy Conference. 2010.
[27] Tronæs Frandsen, S. (2007). Turbulence and turbulence-generated structural loading in wind turbine clusters, Risø National Laboratory.
[28] Vasudevan, A.K., Sadananda, K., and Glinka, G. (2001). Critical parameters for fatigue damage, International Journal of Fatigue. 23(SUPP/1):39--53. doi:10.1016/S0142-1123(01)00171-2
[29] Veers, P.S. (1988). Three-dimensional wind simulations, Sandia Report, SAND-0152.
[30] Øye, S. (2001). Various FLEX 5 documentation, DTU Mechanical Engineerin.


BibTeX:
@article{MIC-2014-2-4,
  title={{Gear fatigue damage for a 500 kW wind turbine exposed to increasing turbulence using a flexible multibody model}},
  author={Jørgensen, Martin Felix and Pedersen, Niels Leergaard and Sørensen, Jens Nørkær},
  journal={Modeling, Identification and Control},
  volume={35},
  number={2},
  pages={109--125},
  year={2014},
  doi={10.4173/mic.2014.2.4},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.