**Page description appears here**

“Modeling and simulation of lab-scale anaerobic co-digestion of MEA waste”

Authors: Shuai Wang, Jon Hovland and Rune Bakke,
Affiliation: Telemark University College and Telemark Technological R&D Centre (Tel-Tek)
Reference: 2014, Vol 35, No 1, pp. 31-41.

     Valid XHTML 1.0 Strict


Keywords: ADM1, CO2 capture, monoethanolamine waste, anaerobic digestion

Abstract: Anaerobic digestion model No.1 (ADM1) was applied and expanded in this study to model and simulate anaerobic digestion (AD) of an industrial carbon capture reclaimer MEA (monoethanolamine) waste (MEAw) together with easily degradable organics. The general structure of ADM1 was not changed except for introducing state variables of MEA and complex organics (CO) in the waste and biochemical reactions of MEA uptake and CO hydrolysis in the model ADM1_MEAw. Experimental batch test results were used for calibrating kinetics variables. The obtained kinetics were employed in the ADM1_MEAw to simulate semi-continuously fed experimental test for 486 days at room temperature (22 +/- 2oC). The validation results show that the ADM1_MEAw was able to predict the process performance with reasonable accuracy, including process pH, biogas generation and inorganic nitrogen concentrations, for a wide range of feed scenarios. Free ammonia inhibition, was observed to be the main inhibitory effects on acetoclastic methanogenesis, leading to volatile fatty acids (VFA) accumulation at high loads. Inhibition assumed to be caused by potentially toxic constituents of MEAw appears to be much less important than ammonia, suggesting that such constituents were broken down by AD.

PDF PDF (541 Kb)        DOI: 10.4173/mic.2014.1.3



DOI forward links to this article:
  [1] Sunil Prasad Lohani, Shuai Wang, Susanne Lackner, Harald Horn, Sanjay Nath Khanal and Rune Bakke (2016), doi:10.1016/j.renene.2016.04.014


References:
[1] Angelidaki, I. and Ahring, B. (1993). Thermophilic anaerobic digestion of livestock waste: the effect of ammonia, Applied Microbiology and Biotechnology. 38(4):560--564. doi:10.1007/BF00242955
[2] Batstone, D., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A., Sanders, W., Siegrist, H., and Vavilin, V. (2002). Anaerobic digestion Model No, 1. IWA publishing. doi:10.2166/wst.2006.520
[3] Batstone, D., Keller, J., and Steyer, J. (2006). A review of adm1 extensions, applications, and analysis: 2002–2005, Water Science and Technology. 54(4):1--10. doi:10.2166/wst.2006.520
[4] Botheju, D., Hovland, J., Haugen, H., and Bakke, R. (2010). Monoethanolamine biodegradation processes, Advances in Gas Processing. pages 77--86. doi:doi: 10.1016/S1876-0147(10)02009-4
[5] Derbal, K., Bencheikh-lehocine, M., Cecchi, F., Meniai, A., and Pavan, P. (2009). Application of the iwa adm1 model to simulate anaerobic co-digestion of organic waste with waste activated sludge in mesophilic condition, bioresource technology. Bioresource Technology. 100(4):1539--1543. doi:10.1016/j.biortech.2008.07.064
[6] Eastman, J. and Ferguson, J. (1981). Solubilization of particulate organic carbon uring the acid phase of anaerobic digestion, Water Pollution Control Federation. 53(3):352--366. doi:10.2307/25041085
[7] Eide-Haugmo, I., Brakstad, O., Hoff, K., Sørheim, K., daSilva, E., and Svendsen, H. (2009). Environmental impact of amines, Energy Procedia. 1(1):1297--1304. doi:10.1016/j.egypro.2009.01.170
[8] ElMoudir, W., Supap, T., Saiwan, C., Idem, R., and Tontiwachwuthikul, P. (2012). Part 6: Solvent recycling and reclaiming issues, Carbon Management. 3(5):485--509. doi:10.4155/cmt.12.55
[9] Fezzani, B. and Cheikh, R. (2009). Extension of the anaerobic digestion model no, 1 (adm1) to include phenol compounds biodegradation processes for simulating the anaerobic co-digestion of olive mill wastes at mesophilic temperature. Journal of Hazardous Materials. 172(2-3):1430--1438. doi:10.1016/j.jhazmat.2009.08.017
[10] Kleerebezem, R. and Loosdrecht, M.V. (2006). Waste characterization for implementation in adm1, Water Science and Technology. 54(4):167--174. doi:10.2166/wst.2006.538
[11] Ndegwa, A., Wong, R., Chu, A., Bentley, L., and Lunn, R. (2004). Degradation of monoethanolamine in soil, Journal of Environmental Engineering and Science. 3(2):137--145. doi:10.1139/s03-074
[12] Ozkan-Yucel, U. and Gokcay, C. (2010). Application of adm1 model to a full-scale anaerobic digester under dynamic organic loading conditions, Environmental Technology. 31(6):633--640. doi:10.1080/09593331003596528
[13] Parker, W. and Wu, G. (2006). Modifying adm1 to include formation and emission of odourants, Water Science and Technology. 54(4):111--117. doi:10.2166/wst.2006.532
[14] Ramirez, I., Mottet, A., Carrère, H., Déléris, S., Vedrenne, F., and Steyer, J. (2009). Modified adm1 disintegration/hydrolysis structures for modeling batch thermophilic anaerobic digestion of thermally pretreated waste activated sludge, Water Research. 43(14):3479--3492. doi:10.1016/j.watres.2009.05.023
[15] Schnurer, A., Zellner, G., and Svensson, B. (1994). Mesophilic syntrophic acetate oxidation during methane formation in biogas reactor, Archives of Microbiology. 162:70--74. doi:10.1007/BF00264375
[16] Siegrist, H. and Batstone, D. (2001). Free ammonia and ph inhibition of acetotrophic methanogenesis at mesophilic and thermophilic conditions, In A.van Velsen and W.Verstraete, editors, Anaerobic Digestion 2001. pages 395--400.
[17] daSilva, E., Lepaumier, H., Grimstvedt, A., Vevelstad, S., Einbu, A., Vernstad, K., Svendsen, H., and Zahlsen, K. (2012). Understanding 2-ethanolamine degradation in postcombustion co2 capture, Industrial and Engineering Chemistry Research. 51(41):13329--13338. doi:10.1021/ie300718a
[18] Speranza, G., Morelli, C., Cairoli, P., Mller, B., and Schink, B. (2006). Mechanism of anaerobic degradation of triethanolamine by a homoacetogenic bacterium, Biochemical and Biophysical Research Communications. 349(2):480–484. doi:10.1016/j.bbrc.2006.08.001
[19] Strazisar, B., Anderson, R., and White, C. (2003). Degradation pathways for monoethanolamine in a co2 capture facility, Energy and Fuels. 17(4):1034--1039. doi:10.1021/ef020272i
[20] Strazisar, B.R., Anderson, R.R., and White, C.M. (2001). Degradation of monoethanolamine used in co2 capture from flue gas of a coal-fired electric power generating station, Journal of Energy and Environmental Research. 1(1):32–39.
[21] Tchobanoglous, G., Burton, F., and Stensel, H. (2003). Wastewater Engineering: Treatment and Reuse, 4th Edition, Meltcalf & Eddy, Inc., McGraw-Hill, Inc., New York. doi:10.1036/0070418780
[22] Thitakamol, B., Veawab, A., and Aroonwilas, A. (2007). Environmental impacts of absorption-based co2 capture unit for post-combustion treatment of flue gas from coal-fired power plant, International Journal of Greenhouse Gas Control. 1(3):318. doi:10.1016/S1750-5836(07)00042-4
[23] Wang, S., Brooks, S., Hovland, J., and Bakke, R. (2014). Detoxifying co2 capture reclaimer waste by anaerobic digestion, Applied Biochemistry and Biotechnology. 172(2):776--783. Erratum: 172(3):1725. doi:10.1007/s12010-013-0587-2
[24] Wang, S., Hovland, J., and Bakke, R. (2013). Anaerobic degradation of carbon capture reclaimer mea waste, Water Science and Technology, 2013a. 67(11):2549--2559. doi:10.2166/wst.2013.155
[25] Wang, S., Hovland, J., and Bakke, R. (2013). Efficiency of the anaerobic digestion of amine wastes, Biotechnology Letters, 2013b. 35(12):2051--2060. doi:10.1007/s10529-013-1296-1
[26] Yasui, H., Goel, R., Li, Y., and Noike, T. (2008). Modified adm1 structure for modeling municipal primary sludge hydrolysis, Water Research. 42(1-2):249--259. doi:10.1016/j.watres.2007.07.004


BibTeX:
@article{MIC-2014-1-3,
  title={{Modeling and simulation of lab-scale anaerobic co-digestion of MEA waste}},
  author={Wang, Shuai and Hovland, Jon and Bakke, Rune},
  journal={Modeling, Identification and Control},
  volume={35},
  number={1},
  pages={31--41},
  year={2014},
  doi={10.4173/mic.2014.1.3},
  publisher={Norwegian Society of Automatic Control}
};

News

May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.