**Page description appears here**

“Straight-Line Target Tracking for Unmanned Surface Vehicles”

Authors: Morten Breivik, Vegard E. Hovstein and Thor I. Fossen,
Affiliation: NTNU, Centre for Ships and Ocean Structures, NTNU, Department of Engineering Cybernetics and Maritime Robotics
Reference: 2008, Vol 29, No 4, pp. 131-149.

     Valid XHTML 1.0 Strict

Keywords: Target Tracking, Unmanned Surface Vehicles, High Speed Motion, Underactuation, Constant Bearing Guidance, Velocity Control System, Full-Scale Experiments

Abstract: This paper considers the subject of straight-line target tracking for unmanned surface vehicles (USVs). Target-tracking represents motion control scenarios where no information about the target behavior is known in advance, i.e., the path that the target traverses is not defined apriori. Specifically, this work presents the design of a motion control system which enables an underactuated USV to track a target that moves in a straight line at high speed. The motion control system employs a guidance principle originally developed for interceptor missiles, as well as a novel velocity controller inspired by maneuverability and agility concepts found in fighter aircraft literature. The performance of the suggested design is illustrated through full-scale USV experiments in the Trondheimsfjord.

PDF PDF (1727 Kb)        DOI: 10.4173/mic.2008.4.2

DOI forward links to this article:
  [1] Zhou-hua Peng, Dan Wang, Wei-yao Lan and Gang Sun (2012), doi:10.1007/s13344-012-0039-8
  [2] Christian R. Sonnenburg and Craig A. Woolsey (2013), doi:10.1002/rob.21452
  [3] Petr vec, Atul Thakur, Eric Raboin, Brual C. Shah and Satyandra K. Gupta (2013), doi:10.1007/s10514-013-9370-z
  [4] Thor I. Fossen and Anastasios M. Lekkas (2015), doi:10.1002/acs.2550
  [5] Shayok Mukhopadhyay, Chuanfeng Wang, Steven Bradshaw, Valerie Bazie, Sean Maxon, Lisa Hicks, Mark Patterson and Fumin Zhang (2012), doi:10.1109/IROS.2012.6385947
  [6] Gabriele Bruzzone, Marco Bibuli, Massimo Caccia and Enrica Zereik (2013), doi:10.1109/OCEANS-Bergen.2013.6608012
  [7] Enrica Zereik, Marco Bibuli, Massimo Caccia and Gabriele Bruzzone (2013), doi:10.1109/MED.2013.6608883
  [8] Petr Svec, Brual C. Shah, Ivan R. Bertaska, Jose Alvarez, Armando J. Sinisterra, Karl von Ellenrieder, Manhar Dhanak and Satyandra K. Gupta (2013), doi:10.1109/IROS.2013.6696910
  [9] Yulei Liao, Yongjie Pang and Lei Wan (2010), doi:10.1109/CAR.2010.5456879
  [10] Anastasios M. Lekkas and Thor I. Fossen (2014), doi:10.1109/ECC.2014.6862594
  [11] Thor I. Fossen, Kristin Y. Pettersen and Roberto Galeazzi (2015), doi:10.1109/TCST.2014.2338354
  [12] Anastasios M. Lekkas and Thor I. Fossen (2014), doi:10.1109/TCST.2014.2306774
  [13] Guoqing Xia, Ju Liu and Huiyong Wu (2013), doi:10.1109/ICNC.2013.6817972
  [14] Guoqing Xia, Ju Liu and Ang Zhao (2015), doi:10.1109/CCDC.2015.7162034
  [15] C Sonnenburg, A Gadre, D Horner, S Kragelund, A Marcus, D J Stilwell and C A Woolsey (2010), doi:10.1109/OCEANS.2010.5664297
  [16] D.J.W. Belleter and K.Y. Pettersen (2015), doi:10.1109/ACC.2015.7171808
  [17] Z.X. Liu, C. Yuan and Y.M. Zhang (2015), doi:10.1016/j.ifacol.2015.10.271
  [18] Claudio Paliotta, Dennis J.W. Belleter and Kristin Y. Pettersen (2015), doi:10.1016/j.ifacol.2015.10.294
  [19] Zhouhua Peng, Dan Wang, Wei Wang and Lu Liu (2016), doi:10.1016/j.neucom.2015.12.085
  [20] G. Bruzzone, M. Bibuli, E. Zereik, A. Ranieri and M. Caccia (2016), doi:10.1002/acs.2667
  [21] Liu Zhixiang, Zhang Youmin, Yuan Chi and Luo Jun (2015), doi:10.1109/ChiCC.2015.7260611
  [22] Galen E. Mullins and Satyandra K. Gupta (2015), doi:10.1109/IROS.2015.7353682
  [23] Pranay Agrawal and John M. Dolan (2015), doi:10.1109/IROS.2015.7353502
  [24] Mingyu Fu, Lingling Yu, Mingyang Li, Yujie Xu and Yuanhui Wang (2015), doi:10.1109/ChiCC.2015.7259679
  [25] Zhixiang Liu, Youmin Zhang and Chi Yuan (2015), doi:10.1109/ICCAS.2015.7364880
  [26] Zhixiang Liu, Youmin Zhang, Xiang Yu and Chi Yuan (2016), doi:10.1016/j.arcontrol.2016.04.018
  [27] M. Burger, A. Pavlov and K.Y. Pettersen (2010), doi:10.3182/20100906-3-IT-2019.00081
  [28] Øivind K. Kjerstad and Morten Breivik (2010), doi:10.3182/20100915-3-DE-3008.00018
  [29] Morten Breivik and Jon-Erik Loberg (2011), doi:10.3182/20110828-6-IT-1002.02969
  [30] M. Burger and K.Y. Pettersen (2010), doi:10.3182/20100913-2-FR-4014.00022
  [31] Xiao Yang, Yue Shen, Kaihong Wang, Qixin Sha, Bo He and Tianhong Yan (2016), doi:10.1109/OCEANSAP.2016.7485596
  [32] Dennis J. W. Belleter and Kristin Y. Pettersen (2017), doi:10.1007/978-3-319-30357-4_8
  [33] Joohyun Woo and Nakwan Kim (2016), doi:10.5574/KSOE.2016.30.3.208
  [34] Yu-long Hua, Xiao-zhou Zheng, Bao-shan Chi and Wei Sun (2016), doi:10.21595/jme.2016.17743
  [35] Tiago Oliveira, A. Pedro Aguiar and Pedro Encarnacao (2016), doi:10.1109/TRO.2016.2593044
  [36] Pablo Garcia-Aunon, Matilde Santos Peñas and Jesus Manuel de la Cruz García (2016), doi:10.1016/j.jal.2016.11.025
  [37] Przemyslaw Herman and Wojciech Kowalczyk (2016), doi:10.1109/SYSTOL.2016.7739736
  [38] Przemyslaw Herman and Wojciech Kowalczyk (2016), doi:10.1109/SYSTOL.2016.7739741
  [39] Luqi (2016), doi:10.1109/OCEANS.2016.7761504
  [40] Murat Kumru, Kemal Leblebicioglu, Izzet Kagan Erunsal and Kenan Ahiska (2016), doi:10.1109/ICARCV.2016.7838568
  [41] Yue-wen Fu, Yu-lei Liao, Bo Wang, Ye Li, Hai-long Shen and Xiao Liang (2016), doi:10.1109/CGNCC.2016.7829005
  [42] M. Altosole and M. Martelli (2017), doi:10.1016/j.oceaneng.2017.03.053
  [43] Yang Qu, Haixiang Xu, Wenzhao Yu, Hui Feng and Xin Han (2017), doi:10.1007/s11804-017-1410-1
  [44] Miros aw Tomera (2017), doi:10.1515/amcs-2017-0005

[1] Aguiar, A. P. Hespanha, J. P. (2007). Trajectory tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty, IEEE Transactions on Automatic Control. 5.8:1362-1379 doi:10.1109/TAC.2007.902731
[2] Beck, J. A. Cord, T. J. (1995). A framework for analysis of aircraft maneuverability, In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Baltimore, Maryland, USA.
[3] Benjamin, M. R., Leonard, J. J., Curcio, J. A., Newman, P. M. (2006). A method for protocol-based collision avoidance between autonomous marine surface craft, Journal of Field Robotics. 2.5:333-346 doi:10.1002/rob.20121
[4] Bertram, V. (2008). Unmanned surface vehicles - A survey, In Skibsteknisk Selskab, Copenhagen, Denmark.
[5] Breivik, M. Fossen, T. I. (2004). Path following for marine surface vessels, In Proceedings of the OTO'04, Kobe, Japan.
[6] Breivik, M. Fossen, T. I. (2007). Applying missile guidance concepts to motion control of marine craft, In Proceedings of the 7th IFAC CAMS, Bol, Croatia.
[7] Breivik, M. Fossen, T. I. (2008). Guidance laws for planar motion control, In Proceedings of the CDC'08, Cancun, Mexico.
[8] Breivik, M., Strand, J. P., Fossen, T. I. (2006). Guided dynamic positioning for fully actuated marine surface vessels, In Proceedings of the 6th IFAC MCMC, Lisbon, Portugal.
[9] Brown, N. (2004). Not just a remote possibility: USVs enter the fray, Jane´s Navy International. 10.1:14-19.
[10] Borhaug, E. Pettersen, K. Y. (2005). Cross-track control for underactuated autonomous vehicles, In Proceedings of the CDC-ECC´05, Seville, Spain.
[11] Caccia, M. (2006). Autonomous surface craft: Prototypes and basic research issues, In Proceedings of the MED´06, Ancona, Italy.
[12] Caccia, M., Bibuli, M., Bono, R., Bruzzone, G. (2008). Basic navigation, guidance and control of an unmanned surface vehicle, Autonomous Robots. 2.4:349-365 doi:10.1007/s10514-008-9100-0
[13] Caccia, M., Bruzzone, G., Bono, R. (2008). A practical approach to modeling and identification of small autonomous surface craft, IEEE Journal of Oceanic Engineering. 3.2:133-145 doi:10.1109/JOE.2008.920157
[14] Cooper, S. L., Newborn, D. A., Norton, M. R. (2002). New paradigms in boat design: An exploration into unmanned surface vehicles, In Proceedings of the AUVSI Unmanned Systems, Lake Buena Vista, Florida, USA.
[15] Corfield, S. J. Young, J. M. (2006). Unmanned surface vehicles - Game changing technology for naval operations, In G. N. Roberts and R. Sutton, editors, Advances in Unmanned Marine Vehicles, pages 311-328. The Institution of Electrical Engineers.
[16] DeGarmo, M. Nelson, G. M. (2006). Prospective unmanned aerial vehicle operations in the future national airspace system, In Proceedings of the 4th AIAA ATIO Forum, Chicago, Illinois, USA.
[17] Do, K. D. Pan, J. (2006). Underactuated ships follow smooth paths with integral actions and without velocity measurements for feedback: Theory and experiments, IEEE Transactions on Control Systems Technology. 1.2:308-322 doi:10.1109/TCST.2005.863665
[18] Doucy, O. Ghozlan, F. (2008). Advanced functions for USV, In Proceedings of the ATMA International Autonomous Surface Ship Symposium, Paris, France.
[19] Draper, C. S. (1971). Guidance is forever, Navigation. 1.1:26-50.
[20] Ebken, J., Bruch, M., Lum, J. (2005). Applying unmanned ground vehicle technologies to unmanned surface vehicles, In Proceedings of SPIE 5804: Unmanned Ground Vehicle Technology VII, Orlando, Florida, USA.
[21] Faltinsen, O. M. (1990). Sea Loads on Ships and Offshore Structures, Cambridge University Press.
[22] Faltinsen, O. M. (2005). Hydrodynamics of High-Speed Marine Vehicles, Cambridge University Press.
[23] Fossen, T. I. (2002). Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles, Marine Cybernetics.
[24] Fossen, T. I. (2005). A nonlinear unified state-space model for ship maneuvering and control in a seaway, Journal of Bifurcation and Chaos. 1.9:2717-2746 doi:10.1142/S0218127405013691
[25] Fredriksen, E. Pettersen, K. Y. (2006). Global kappa-exponential way-point maneuvering of ships: Theory and experiments, Automatica. 4.4:677-687 doi:10.1016/j.automatica.2005.12.020
[26] Gibbons, T. D. Wilson, P. A. (2008). Operating a remotely controlled yacht at very large distances, In Proceedings of the ATMA International Autonomous Surface Ship Symposium, Paris, France.
[27] Hook, D. J. (2006). Development of unmanned surface vehicles, In Proceedings of the World Maritime Technology Conference, London, UK.
[28] Kongsberg Maritime. (2006). Kongsberg K-Pos DP dynamic positioning system, Report no. 301093/B.
[29] Kongsberg Seatex. (2006). Datasheet Seapath 20 NAV, .
[30] Larson, J., Bruch, M., Halterman, R., Rogers, J., Webster, R. (2007). Advances in autonomous obstacle avoidance for unmanned surface vehicles, In Proceedings of the AUVSI Unmanned Systems North America, Washington D.C., USA.
[31] LaValle, S. M. (2006). Planning Algorithms, Cambridge University Press.
[32] Loe, O. A. G. (2008). Collision Avoidance for Unmanned Surface Vehicles, Master´s thesis, Norwegian University of Science and Technology.
[33] Majohr, J. Buch, T. (2006). Modelling, simulation and control of an autonomous surface marine vehicle for surveying applications Measuring Dolphin MESSIN, In G. N. Roberts and R. Sutton, editors, Advances in Unmanned Marine Vehicles, pages 329-351. The Institution of Electrical Engineers.
[34] Naeem, W., Xu, T., Sutton, R., Tiano, A. (2008). The design of a navigation, guidance, and control system for an unmanned surface vehicle for environmental monitoring, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 22.2:67-79.
[35] Navy, U. S. (2007). The Navy unmanned surface vehicle, USV master plan.
[36] Paranjape, A. A. Ananthkrishnan, N. (2006). Combat aircraft agility metrics - A review, Journal of Aerospace Sciences and Technologies. 5.2:1-12.
[37] Perez, T., Sørensen, A. J., Blanke, M. (2006). Marine vessel models in changing operational conditions - A tutorial, In Proceedings of the 14th IFAC SYSID, Newcastle, Australia.
[38] Portmann, H. H., Cooper, S. L., Norton, M. R., Newborn, D. A. (2002). Unmanned surface vehicles: Past, present, and future, Unmanned Systems. 2.5:32-37.
[39] Sciavicco, L. Siciliano, B. (2002). Modelling and Control of Robot Manipulators, Springer-Verlag London Ltd.
[40] Shneydor, N. A. (1998). Missile Guidance and Pursuit: Kinematics, Dynamics and Control, Horwood Publishing Ltd.
[41] Skjetne, R., Fossen, T. I., Kokotovic, P. V. (2004). Robust output maneuvering for a class of nonlinear systems, Automatica. 4.3:373-383 doi:10.1016/j.automatica.2003.10.010
[42] Skjetne, R., Smogeli, Ø. N., Fossen, T. I. (2004). A nonlinear ship manoeuvering model: Identification and adaptive control with experiments for a model ship, Modeling, Identification and Control. 2.1:3-27 doi:10.4173/mic.2004.1.1
[43] Sørensen, A. J., Leira, B., Strand, J. P., Larsen, C. M. (2001). Optimal setpoint chasing in dynamic positioning of deep-water drilling and intervention vessels, International Journal of Robust and Nonlinear Control. 11:1187-1205 doi:10.1002/rnc.602
[44] Valavanis, K. P., Gracanin, D., Matijasevic, M., Kolluru, R., Demetriou, G. A. (2008). Control architectures for autonomous underwater vehicles, IEEE Control Systems Magazine, 1997. 17(6):48-64. Withington, T. No crew onboard! Armada International. 32(3):18-26.

  title={{Straight-Line Target Tracking for Unmanned Surface Vehicles}},
  author={Breivik, Morten and Hovstein, Vegard E. and Fossen, Thor I.},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.

July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.

Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.

Jan 2012: Follow MIC on your smartphone by using the RSS feed.


July 2011: MIC passes 1000 ISI Web of Science citations.

Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.

Dec 2009: A MIC group is created at LinkedIn and Twitter.

Oct 2009: MIC is now fully updated in ISI Web of Knowledge.