**Page description appears here**

“Operational space synchronization of two robot manipulators through a virtual velocity estimate”

Authors: Erik Kyrkjebø and Kristin Y. Pettersen,
Affiliation: SINTEF and NTNU, Department of Engineering Cybernetics
Reference: 2008, Vol 29, No 2, pp. 59-68.

     Valid XHTML 1.0 Strict


Keywords: Robot manipulator, synchronization, observer, nonlinear, virtual

Abstract: Two robot manipulators are synchronized in a leader-follower scheme where only joint position measurements of the leader are available. A virtual manipulator is designed to provide a velocity estimate of the unknown leader velocity to the control law of the follower. The closed-loop errors are shown to be uniformly globally practically asymptotically stable.

PDF PDF (227 Kb)        DOI: 10.4173/mic.2008.2.3



DOI forward links to this article:
  [1] Erik Kyrkjebø (2015), doi:10.4173/mic.2015.2.3
  [2] Yassine Bouteraa and Ismail Ben Abdallah (2016), doi:10.3103/S0146411616050023


References:
[1] Blekhman, I. (1971). Synchronization of Dynamical Systems, in Russian, English translation in ASME Press, New York: Synchronization in Science and Technology, Nauka, Moscow.
[2] Bondhus, A. K., Pettersen, K. Y., Nijmeijer, H. (2004). Master-slave synchronization of robot manipulators, In Proc. 6th IFAC Symp. on Nonlinear Control Systems. Stuttgart, Germany, pp. 591-596.
[3] Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., Bonabeau, E. (2001). Self-Organization in Biological Systems, Princeton studies in complexity. Princeton University Press.
[4] Chaillet, A. (2006). Staiblité et Robustesse des Cascades Nonlinéaires et Application aux Systèmes Mécaniques, Ph.D. thesis, L'Université Paris XI Orsay, Supélec, France.
[5] Chaillet, A. Lorýa, A. (2005). Uniform semiglobal asymptotic stability for time-varying nonlinear cascaded systems, In Proc. IFAC World Congress.
[6] Cheng, G., Gu, J., Bai, T., Majdalawieh, O. (2004). A new efficient control algorithm using potential field: extension to robot path tracking, In Canadian Conf. on Electrical and Computer Engineering. pp. 2035-2040.
[7] Crowley, J. (1989). Asynchronous control of orientation and displacement in a robot vehicle, In Proc. IEEE Int. Conf. on Robotics and Automation. Scottsdale, AZ, USA, pp. 1277-1282.
[8] De Queiroz, M., Hu, J., Dawson, D., Burg, S., T. and Donepudi (1997). Adaptive position/force control of robot manipulators without velocity measurements: theory and experimentation, IEEE Trans. on Systems, Man and Cybernetics, Part B, 2.5:796 - 809.
[9] Egerstedt, M., Hu, X., Stotsky, A. (2001). Control of mobile platforms using a virtual vehicle approach, IEEE Trans. on Automatic Control, 4.11:1777-1782 doi:10.1109/9.964690
[10] Fradkov, A., Gusev, S., Makarov, I. (1991). Robust speed gradient adaptive control algorithms for manipulators and mobile robots, In Proc. 30th IEEE Conf. on Decision and Control. Brighton, England, pp. 3095-3096.
[11] Fradkov, A. L., Nijmeijer, H., Pogromsky, A. Y. (2000). Controlling Chaos and Bifurcations in Engineering Systems, chapter Adaptive observer-based synchronization, pp, 417 - 438. CRC Press.
[12] Gusev, S., Makarov, I., Paromtchik, I., Yakubovich, V., Laugier, C. (1998). Adaptive motion control of a noholonomic vehicle, In Proc. IEEE Int. Conf. on Robotics and Automation. pp. 3285-3290.
[13] Hu, X., Alarcon, D., Gustavi, T. (2003). Sensor-based navigation coordination for mobile robots, In Proc. 42nd IEEE Conf. on Decision and Control, pp. 6375-6380.
[14] Huygens, C. (1673). Horoloquium Oscilatorium, Paris, France.
[15] Kelly, R. (1993). A simple set-point robot controller by using only position measurements, In Proc. IFAC World Congress, volume 6. Sydney, Australia, pp. 173 - 176.
[16] Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation, IEEE Journal of Robotics and Automation. RA-.1:43 - 53 doi:10.1109/JRA.1987.1087068
[17] Kyrkjebø, E., Panteley, E., Chaillet, A., Pettersen, K. Y. (2006). Group Coordination and Cooperative Control, volume 336 of Lecture Notes in Control and Information Systems, chapter A Virtual Vehicle Approach to Underway Replenishment, pp, 171 - 189. Springer Verlag, Tromsø, Norway.
[18] Kyrkjebø, E. Pettersen, K. Y. (2003). Ship replenishment using synchronization control, In Proc. 6th IFAC Conf. on Manoeuvring and Control of Marine Craft. Girona, Spain, pp. 286-291.
[19] Kyrkjebø, E. Pettersen, K. Y. (2005). Output synchronization control of Euler-Lagrange systems with nonlinear damping terms, In Proc. 44th IEEE Conf. on Decision and Control and European Control Conf. Sevilla, Spain, pp. 4951-4957.
[20] Kyrkjebø, E. Pettersen, K. Y. (2006). A virtual vehicle approach to output synchronization control, In Proc. 45th Conf. on Decision and Control. San Diego, USA.
[21] Lorýa, A. Melhem, K. (2002). Position feedback global tracking control of el systems: A state transformation approach, IEEE Trans. on Automatic Control. 4.5:841 - 847 doi:10.1109/TAC.2002.1000284
[22] Lorýa, A. Ortega, R. (1995). On tracking control of rigid and flexible joints robots, Appl Math Comp Sci, special issue on Mathematical Methods in Robotics. .2:101 - 113.
[23] Nijmeijer, H. Rodriguez-Angeles, A. (2003). Synchronization of Mechanical Systems, volume 46, World Scientific Series on Nonlinear Science, Series A.
[24] Ortega, R. Spong, M. W. (1989). Adaptive motion control of rigid robots: A tutorial, Automatica. 25(6):877 - 888 doi:10.1016/0005-1098(89)90054-X
[25] Rodriguez-Angeles, A. Nijmeijer, H. (2001). Coordination of two robot manipulators based on position measurements only, Int. Journal of Control, 74:1311-1323 doi:10.1080/00207170110065893
[26] Sakaguchi, T., Uno, A., Tsugawa, S. (1999). Inter-vehicle communications for merging control, In Proc. IEEE Int. Vehicle Electronics Conf. pp. 365 - 370.
[27] Salichs, M., Puente, E., Gachet, D., Moreno, L. (1991). Trajectory tracking for a mobile robot - an application to contour following, In Proc. Int. Conf. on Industrial Electronics, Control and Instrumentation. Kobe, pp. 1067-1070.
[28] Sciavicco, L. Siciliano, B. (1996). Modeling and Control of Robot Manipulators, McGraw-Hill Series in Electrical and Computer Engineering. McGraw-Hill.
[29] Slotine, J.-J. E. Li, W. (1987). Adaptive manipulator control a case study, In Proc. IEEE Int. Conf. on Robotics and Automation. pp. 1392-1400.


BibTeX:
@article{MIC-2008-2-3,
  title={{Operational space synchronization of two robot manipulators through a virtual velocity estimate}},
  author={Kyrkjebø, Erik and Pettersen, Kristin Y.},
  journal={Modeling, Identification and Control},
  volume={29},
  number={2},
  pages={59--68},
  year={2008},
  doi={10.4173/mic.2008.2.3},
  publisher={Norwegian Society of Automatic Control}
};

News

Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.