**Page description appears here**

“Nonlinear Container Ship Model for the Study of Parametric Roll Resonance”

Authors: Christian Holden, Roberto Galeazzi, Claudio Rodríguez, Tristan Perez, Thor I. Fossen, Mogens Blanke, Marcelo de Almeida and Santos Neves,
Affiliation: NTNU, Department of Engineering Cybernetics, Technical University of Denmark, University of Newcastle (Australia) and NTNU, Centre for Ships and Ocean Structures
Reference: 2007, Vol 28, No 4, pp. 87-103.

     Valid XHTML 1.0 Strict


Keywords: parametric roll resonance; nonlinear systems; model validation; parameter identification; ships

Abstract: Parametric roll is a critical phenomenon for ships, whose onset may cause roll oscillations up to +-40 degrees, leading to very dangerous situations and possibly capsizing. Container ships have been shown to be particularly prone to parametric roll resonance when they are sailing in moderate to heavy head seas. A Matlab/Simulink parametric roll benchmark model for a large container ship has been implemented and validated against a wide set of experimental data. The model is a part of a Matlab/Simulink Toolbox (MSS, 2007). The benchmark implements a 3rd-order nonlinear model where the dynamics of roll is strongly coupled with the heave and pitch dynamics. The implemented model has shown good accuracy in predicting the container ship motions, both in the vertical plane and in the transversal one. Parametric roll has been reproduced for all the data sets in which it happened, and the model provides realistic results which are in good agreement with the model tank experiments.

PDF PDF (1428 Kb)        DOI: 10.4173/mic.2007.4.1



DOI forward links to this article:
  [1] Tristan Perez and Mogens Blanke (2012), doi:10.1016/j.arcontrol.2012.03.010
  [2] Marcelo A.S. Neves, Jorge A. Merino and Claudio A. Rodríguez (2009), doi:10.1016/j.oceaneng.2009.07.005
  [3] Adrian Biran and Rubén López-Pulido (2014), doi:10.1016/B978-0-08-098287-8.00012-8
  [4] (2014), doi:10.1016/B978-0-08-098287-8.00024-4
  [5] Lijun Yu, Shaoying Liu, Fanming Liu and Hui Wang (2015), doi:10.1007/s11804-015-1292-z
  [6] Dennis J.W. Belleter, Roberto Galeazzi and Thor I. Fossen (2015), doi:10.1016/j.oceaneng.2014.12.030
  [7] Roberto Galeazzi, Mogens Blanke, Thomas Falkenberg, Niels K. Poulsen, Nikos Violaris, Gaute Storhaug and Mikael Huss (2015), doi:10.1016/j.oceaneng.2015.08.037
  [8] Roberto Galeazzi, Mogens Blanke and Niels Kjřlstad Poulsen (2013), doi:10.1109/TCST.2012.2189399
  [9] Qiguo Yao and Yuliang Liu (2016), doi:10.1007/s11071-015-2576-1
  [10] R. Galeazzi, M. Blanke and N. Kjřlstad Poulsen (2009), doi:10.3182/20090916-3-BR-3001.0037
  [11] Roberto Galeazzi and Tristan Perez (2011), doi:10.3182/20110828-6-IT-1002.01474
  [12] Dominik Breu and Thor I. Fossen (2010), doi:10.3182/20100915-3-DE-3008.00003
  [13] R. Galeazzi, M. Blanke and N. Kjřlstad Poulsen (2009), doi:10.3182/20090630-4-ES-2003.00058
  [14] G. I. Depetri, J. C. Sartorelli, B. Marin and M. S. Baptista (2016), doi:10.1103/PhysRevE.94.012202
  [15] C Stanca, C Ancuta, N Acomi and C Andrei (2016), doi:10.1088/1757-899X/145/8/082022
  [16] Wojciech Wawrzy ski and Przemys aw Krata (2016), doi:10.1016/j.oceaneng.2016.08.026
  [17] Kang-Hyun Song, Yonghwan Kim and Dong-Min Park (2013), doi:10.1177/1475090212464329
  [18] Wojciech Wawrzy ski (2018), doi:10.1016/j.oceaneng.2017.11.013
  [19] Justin M. Kennedy, Jason J. Ford, Francis Valentinis and Tristan Perez (2018), doi:10.1016/j.ifacol.2018.09.477
  [20] Justin M. Kennedy, Jason J. Ford, Tristan Perez and Francis Valentinis (2018), doi:10.1016/j.ifacol.2018.09.447
  [21] Ana Barjau, Juan Herranz and Bernd Dehning (2016), doi:10.1115/1.4033568
  [22] Liang Lihua, Zhao Peng, Zhang Songtao and Yuan Jia (2019), doi:10.1016/j.oceaneng.2018.12.067
  [23] Yongchao Han and Ming Li (2019), doi:10.1155/2019/7683952


References:
[1] Bulian, G. (2006). Development of analytical nonlinear models for parametric roll and hydrostatic restoring variations in regular and irregular waves, Ph.D. thesis, Universitŕ degli Studi di Trieste.
[2] Carmel, S. M. (2006). Study of parametric rolling event on a panamax container vessel, Journal of the Transportation Research Board. 1963:56 - 63.
[3] France, W. N., Levadou, M., Treakle, T. W., Paulling, J. R., Michel, R. K., Moore, C. (2001). An investigation of head-sea parametric rolling and its influence on container lashing systems, In SNAME Annual Meeting.
[4] Francescutto, A. (2001). An experimental investigation of parametric rolling in head waves, Journal of Offshore Mechanics and Arctic Engineering, 123:65 - 69 doi:10.1115/1.1355247
[5] Francescutto, A. Bulian, G. (2002). Nonlinear and stochastic aspects of parametric rolling modelling, In Proc. of the 6th International Ship Stability Workshop.
[6] Himeno, Y. (1981). Prediction of ship roll damping - state of the art, Technical report, Department of Naval Architecture and Marine Engineering, The University of Michigan.
[7] Jensen, J. J. (2007). Effcient estimation of extreme non-linear roll motions using the first-order reliability method (FORM), Marine Science and Technology. 12(4):191 - 202.
[8] MSS. (2007). Marine Systems Simulator - Matlab/Simulink Toolbox, www.marinecontrol.org. Accessed November 30.
[9] Neves, M. A. S. (2002). On the excitation of combination modes associated with parametric resonance in waves, In Proc. of the 6th International Ship Stability Workshop.
[10] Neves, M. A. S. Rodríguez, C. A. (2005). A coupled third order model of roll parametric resonance, Maritime Transportation and Exploitation of Ocean and Coastal Resources.
[11] Neves, M. A. S. Rodríguez, C. A. (2006). An investigation on roll parametric resonance in regular waves, In Proc. of the 9th International Conference on Stability of Ships and Ocean Vehicles.
[12] Neves, M. A. S. Rodríguez, C. A. (2006). On unstable ship motions resulting from strong non-linear coupling, Ocean Engineering. 33:1853 - 1883 doi:10.1016/j.oceaneng.2005.11.009
[13] Newman, J. N. (1977). Marine Hydrodynamics, The MIT Press.
[14] Nielsen, J. K., Pedersen, N. H., Michelsen, J., Nielsen, U. D., Baatrup, J., Jensen, J. J., Petersen, E. S. (2006). SeaSense - real-time onboard decision support, In World Maritime Technology Conference.
[15] Palmquist, M. Nygren, C. (2004). Recording of head-sea parametric rolling on a PCTC, Technical report, International Maritime Organization.
[16] Perez, T. (2005). Ship Motion Control, Springer.
[17] Rodríguez, C. A., Holden, C., Perez, T., Drummen, I., Neves, M. A. S., Fossen, T. I. (2007). Validation of a container ship model for parametric rolling, In Proc. of the 9th International Ship Stability Workshop.
[18] Salvesen, N., Tuck, O. E., Faltinsen, O. (1970). Ship motions and sea loads, Transactions of SNAME, 78:250 - 287.
[19] Shin, Y. S., Belenky, V. L., Paulling, J. R., Weems, K. M., Lin, W. M. (2004). Criteria for parametric roll of large containeships in longitudinal seas, Transactions of SNAME, 112.
[20] Tondl, A., Ruijgrok, T., Verhulst, F., Nabergoj, R. (2000). Autoparametric Resonance in Mechanical Systems, Cambridge University Press.


BibTeX:
@article{MIC-2007-4-1,
  title={{Nonlinear Container Ship Model for the Study of Parametric Roll Resonance}},
  author={Holden, Christian and Galeazzi, Roberto and Rodríguez, Claudio and Perez, Tristan and Fossen, Thor I. and Blanke, Mogens and de Almeida, Marcelo and Neves, Santos},
  journal={Modeling, Identification and Control},
  volume={28},
  number={4},
  pages={87--103},
  year={2007},
  doi={10.4173/mic.2007.4.1},
  publisher={Norwegian Society of Automatic Control}
};

News

Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.