“Linear MPC with Optimal Prioritized Infeasibility Handling: Application, Computational Issues and Stability”

Authors: Jostein Vada, Olav Slupphaug, Tor A. Johansen and Bjarne A. Foss,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 2001, Vol 22, No 4, pp. 243-256.

Keywords: Model based control: infeasibility handling; linear programming; linear systems

Abstract: All practical MPC implementations should have a means to recover from infeasibility. We present a recently developed infeasibility handler which computes optimal relaxations of the relaxable constraints subject to a user-defined prioritization, by solving only a single linear program on-line in addition to the standard quadratic programming problem on-line. A stability result for this infeasibility handler combined with the Rawlings-Muske MPC controller is provided, and various practical and computational issues are discussed. From a simulated FCCU main fractionator case study, we conclude that the proposed strategy for designing the proposed infeasibility handler is applicable on problems of realistic size.

PDF PDF (1855 Kb)        DOI: 10.4173/mic.2001.4.4

References:
[1] ALVAREZ, T. C. DE PRADA (1997). Handling Infeasibilities in Predictive Control, Computers chem. Engng. 21 , pp. 577-582.
[2] CONG, S.B., P. YUAN F. SHEN (1998). An integrated non-equilibrium dynamic model of petroleum distillation column, Unpublished manuscript.
[3] GAL, T. (1995). Postoptimal Analyses, Parametric Programming, and Related Topics, 2 ed. Walter de Gruyter.
[4] GARCIA, C.E. A.M. MORSHEDI (1986). Quadratic Programming Solution of Dynamic Matrix Control, QDMC. Chemical Engineering Communications 46, 73-87 doi:10.1080/00986448608911397
[5] GILBERT, E.G. K.T. TAN (1991). Linear Systems with State and Control Constraints: The Theory and Application of Maximal Output Admissible Sets, IEEE Transactions On Automatic Control 3.19, pp. 1008-1020 doi:10.1109/9.83532
[6] KERRIGAN, E., A. BEMPORAD, D. MIGNONE, M. MORARI J.M. MACIEJOWSKI (2000). Multi-objective Proritisation and Reconfiguration for the Control of Constrained Hybrid Systems, In: Proc. American Control Conference, Chicago. pp. 1694-1698.
[7] QIN, S. J. T.A. BADGWELL, (1997). An Overview of Industrial Model Predictive Control Technology, In: Fifth International Conference on Chemical Process Control.J.C. KANTOR, C.E. GARCIA and B. CARNAHAN, Eds.. AIChE Symposium Series 316. pp. 232-256.
[8] RAWLINGS, J.B. K.R. MUSKE (1993). The Stability of Constrained Receding horizon Control, IEEE Transactions on Automatic Control 3.10, pp. 1512-1516 doi:10.1109/9.241565
[9] SCOKAERT, P.O.M. (1994). Constrained predictive control, PhD thesis. University of Oxford, UK.
[10] SCOKAERT, P.O. M. J. B. RAWLINGS (1999). Feasibility issues in model predictive control, AIChE Journal 4.8, pp. 1649-1659 doi:10.1002/aic.690450805
[11] TYLER, M.L. M. MORARI (1999). Propositional logic in control and monitoring problems, Automatica 35, pp. 565-582 doi:10.1016/S0005-1098(98)00198-8
[12] VADA, J., O. SLUPPHAUG T. A. JOHANSEN (2001). Efficient Optimal Prioritized Infeasibility Handling in Model Predictive Control - a Parametric Preemptive Multi-Objective Linear Programming Approach, Journal of Optimization Theory and Applications.
[13] ZHENG, A. M. MORARI (1995). Stability of Model Predictive Control with Mixed Constraints, IEEE Transactions on Automatic Control 4.10, pp. 1818-1823 doi:10.1109/9.467664


BibTeX:
@article{MIC-2001-4-4,
  title={{Linear MPC with Optimal Prioritized Infeasibility Handling: Application, Computational Issues and Stability}},
  author={Vada, Jostein and Slupphaug, Olav and Johansen, Tor A. and Foss, Bjarne A.},
  journal={Modeling, Identification and Control},
  volume={22},
  number={4},
  pages={243--256},
  year={2001},
  doi={10.4173/mic.2001.4.4},
  publisher={Norwegian Society of Automatic Control}
};