**Page description appears here**

“Simulation of ordinary differential equations on manifolds: some numerical experiments and verifications”

Authors: Arne Marthinsen, Hans Munthe-Kaas and Brynjulf Owren,
Affiliation: NTNU
Reference: 1997, Vol 18, No 1, pp. 75-88.

     Valid XHTML 1.0 Strict


Keywords: Ordinary differential equations, manifolds, numerical analysis, initial value problems

Abstract: During the last few years, different approaches for integrating ordinary differential equations on manifolds have been published. In this work, we consider two of these approaches. We present some numerical experiments showing benefits and some pitfalls when using the new methods. To demonstrate how they work, we compare with well known classical methods, e.g. Newmark and Runge-Kutta methods.

PDF PDF (1557 Kb)        DOI: 10.4173/mic.1997.1.4



DOI forward links to this article:
  [1] P. Krysl and L. Endres (2005), doi:10.1002/nme.1272
  [2] Arne Marthinsen (1999), doi:10.1137/S0036142998338861
  [3] A. Zanna (1999), doi:10.1137/S0036142997326616
  [4] Hans Munthe-Kaas (1999), doi:10.1016/S0168-9274(98)00030-0
  [5] Phani Kumar V. V. Nukala and William Shelton Jr (2007), doi:10.1002/nme.1874
  [6] A. Müller and Z. Terze (2013), doi:10.1016/j.cam.2013.10.039
  [7] Stig Faltinsen, Arne Marthinsen and Hans Z. Munthe-Kaas (2001), doi:10.1016/S0168-9274(01)00103-9
  [8] Hans Munthe-Kaas (1998), doi:10.1007/BF02510919
  [9] L.O. Jay (2004), doi:10.1016/j.camwa.2003.02.013
  [10] Andreas Müller and Zdravko Terze (2014), doi:10.1016/j.mechmachtheory.2014.06.014
  [11] Zdravko Terze, Andreas Müller and Dario Zlatar (2016), doi:10.1007/s11044-016-9518-7
  [12] Andreas Müller and Zdravko Terze (2016), doi:10.1007/s00707-016-1760-9
  [13] Charles Curry and Brynjulf Owren (2019), doi:10.1007/s11075-019-00659-0


References:
[1] ARNOLD, V. I. (1989). Mathematical Methods of Classical Mechanics, Springer-Verlag, GTM 60, Second edition.
[2] CALVO, M. P., ISERLES, A. ZANNA, A. (1995). Numerical Solution of Isospectral Flows, Tech. Rep. DAMTP 1995/NA03, Department of Applied Mathematics and Theoretical Physics, University of Cambridge.
[3] CALVO, M. P., ISERLES, A. ZANNA, A. (1995). Runge-Kutta Methods on Manifolds, Preprint.
[4] CROUCH, P. E. GROSSMAN, R. (1993). Numerical Integration of Ordinary Differential Equations on Manifolds, J. Nonlinear Sci., Vol. 3, pp. 1-33 doi:10.1007/BF02429858
[5] DIECI, L., RUSSEL, R. D. VAN VLECK, E. S. (1994). Unitary Integrators and Applications to Continuous Orthonormalization Techniques, SIAM J. Numer. Anal., Vol. 31, No. 1, pp. 261-281 doi:10.1137/0731014
[6] HAIRER, E., NĜRSETT, S. P. WANNER, G. (1993). Solving Ordinary Differential Equations 1, SCM 8, Springer-Verlag, Second Edition.
[7] HILBER, H. M., HUGHES, T. J. R. TAYLOR, R. L. (1977). Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics, Earthquake Eng. and Struct. Dynamics, Vol. 5, pp. 283-292 doi:10.1002/eqe.4290050306
[8] ISERLES, A. ZANNA, A. (1995). Qualitative Numerical Analysis of Ordinary Differential Equations, Tech. Rep. DAMTP 1995/NA05, Department of Applied Mathematics and Theoretical Physics, University of Cambridge.
[9] MARTHINSEN, A. OWREN, B. (1996). Order Conditions for Integration Methods Based on Rigid Frames, manuscript.
[10] MUNTHE-KAAS, (1995). Lie-Butcher Theory for Runge-Kutta Methods, BIT 35, pp. 572-587 doi:10.1007/BF01739828
[11] MUNTHE-KAAS, H. (1996). Runge-Kutta Methods on Lie Groups, submitted to BIT.
[12] MUNTHE-KAAS, H. ZANNA, A. (1997). Numerical Integration of Differential Equations on Homogeneous Manifolds, in Foundation of Computational Mathematics, CUCKER, F..ed., Springer Verlag, to appear.
[13] SANZ-SERNA, J. M. CALVO, M. P. (1994). Numerical Hamiltonian Problems, Chapman and Hall.
[14] SIMO, J. C. WONG, K. K. (1991). Unconditionally Stable Algorithms for Rigid Body Dynamics that Exactly Preserve Energy and Momentum, Intl. J. for Num. Methods in Engineering, Vol. 31.
[15] ZANNA, A. MUNTHE-KAAS, H. (1997). Iterated Commutators, Lie´s Reduction Method and Ordinary Differential Equations on Matrix Lie Groups, In Foundation of Computational Mathematics, CUCKER. F..ed., Springer Verlag, to appear.


BibTeX:
@article{MIC-1997-1-4,
  title={{Simulation of ordinary differential equations on manifolds: some numerical experiments and verifications}},
  author={Marthinsen, Arne and Munthe-Kaas, Hans and Owren, Brynjulf},
  journal={Modeling, Identification and Control},
  volume={18},
  number={1},
  pages={75--88},
  year={1997},
  doi={10.4173/mic.1997.1.4},
  publisher={Norwegian Society of Automatic Control}
};

News

Oct 2018: MIC reaches 3000 DOI Forward Links. The last 1000 took 2 years and 5 months.


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.


July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.


Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.