“Modeling and simulation of an anode carbon baking furnace”

Authors: Ø. Gundersen and Jens G. Balchen,
Affiliation: NTNU, Department of Engineering Cybernetics
Reference: 1995, Vol 16, No 1, pp. 3-33.

Keywords: First principles modeling, distributed thermal batch process, heat transfer, combustion, pyrolysis

Abstract: The anode temperature profile in a Hydro Aluminium baking furnace is obtained by solving the three dimensional heat equation. The main heat transfer and chemical processes are taken into account. Due to symmetry, one half of a pit is modeled. Along the gas path, submodels are derived for the under-pit area, pit area and under-lid area. For the gas flow, a stationary model is derived, whereas the heat equations are dynamically solved. The numerical model is derived from the control volume formulation.

PDF PDF (3713 Kb)        DOI: 10.4173/mic.1995.1.1

DOI forward links to this article:
[1] Mona Jacobsen and Morten Christian Melaaen (1998), doi:10.1080/10407789808914004
[2] François Grégoire, Louis Gosselin and Houshang Alamdari (2013), doi:10.1021/ie3030467
[3] Noura Oumarou, Yasar Kocaefe, Duygu Kocaefe, Brigitte Morais and Jacques Lafrance (2015), doi:10.1002/9781119093435.ch181
[4] Noura Oumarou, Duygu Kocaefe, Yasar Kocaefe and Brigitte Morais (2016), doi:10.1016/j.applthermaleng.2016.07.090
[5] Noura Oumarou, Yasar Kocaefe, Duygu Kocaefe, Brigitte Morais and Jacques Lafrance (2015), doi:10.1007/978-3-319-48248-4_181
[6] Noura Oumarou, Duygu Kocaefe and Yasar Kocaefe (2017), doi:10.1016/j.apm.2017.09.003
[7] Bowen Chen, Hicham Chaouki, Donald Picard, Donald Ziegler, Houshang Alamdari and Mario Fafard (2020), doi:10.1115/1.4044665
[8] Daniel Brough and Hussam Jouhara (2020), doi:10.1016/j.ijft.2019.100007
[9] Siyang Zheng, Zhenghua Rao and Shengming Liao (2020), doi:10.1002/er.6281
[10] Bowen Chen, Hicham Chaouki, Donald Picard, Julien Lauzon-Gauthier, Houshang Alamdari and Mario Fafard (2021), doi:10.3390/ma14040923
References:
[1] BIRD, B.R., STEWARD, W.E. LIGHTFOOT, E.N. (1960). Transport phenomena, John Wiley and Sons, New York.
[2] BÖTTGER, C. (1990). Ansätze für Mathematische Modellierung des Brennprozesses von Grossformatigen Feinkörnigen Graphitwerkstoffen, VoL A 803 of Freiberger Forschungshefte A. Grundstoff-Verfahrenstechnik-Brennstofftechnik.VED Deutcher Verlag für Grundstoffindustrie, Leipzig, pp. 71-84.
[3] BOURGEOIS, T., BUI, R.T., CHARETTE, A., SADLER, B.A. THOMSETT, A.D. (1990). Computer simulation of a vertical ring furnace, In C.M. Bickert.ed., Light Metals 1990: Proc. of the technical sessions presented by the TMS light Metals Committee at the 119th AIME Annual Meeting, The Metallurgical Society of AIME, Anaheim, California, pp. 547-552.
[4] BUI, R.T., CHARETTE, A. BOURGEOIS, T. (1984). Simulating the process of carbon anode baking used in the aluminium industry, Metallurgical Transactions B, 15B, 487-492 doi:10.1007/BF02657379
[5] BUI, R.T., CHARETTE, A. BOURGEOIS, T. (1987). Performance analysis of the ring furnace used for baking industrial carbon electrodes, The Canadian Journal of Chemical Engineering, 65,96-101 doi:10.1002/cjce.5450650116
[6] BUI, R.T., PETER, S., CHARETTE, A., TOMSETT, A.D. POTOCNIK, V. (1992). Reidhammer furnace: Under-lid heat transfer analysis, In E.R. Cutshall.ed., Light Metals 1992: Proc. of the technical sessions presented by the TMS Light Metals Committee presented at the 121st TMS Annual Meeting, The Metallurgical Society of AIME, San Diego, California, pp. 894-901.
[7] DERNEDDE, E., CHARETTE, A., BOURFEOIS, T. CASTONGUAY, L. (1986). Kinematic phenomena of the volatiles in ring furnaces, In R. E. Miller.ed., Light Metals 1986: Proc of the technical sessions presented by the TMS Light Metals Committee at the 115th TMS Annual Meeting, The Metallurgical Society of AIME, New Orleans, Louisiana, pp. 589-592.
[8] FROMENT, G.F. BISCHOFF, K.B. (1990). Chemical reactor analysis and design, 2 edn.John Wiley and Sons, New York ISBN 0-741-51044-0.
[9] FURMAN, A. MARTIRENA, H. (1980). A mathematical model simulating an anode baking furnace, In C. J. McMinn.ed., Light Metals 1980: Proc. of the technical sessions sponsored by the TMS Light Metals Committee at the 109th AIME Annual Meting, The Metallurgical Society of AIME, Las Vegas, Nevada, pp. 545-552. ISBN 0-89520-359-6.
[10] HURLEN, J., LID, O., NATERSTAD, T. UTNE, P. (1981). Operation characteristics for a vertical flue ring furnace, In G. M. Bell.ed., Light Metals 1981: Proc. of the technical sessions sponsored by the TMS Light Metals Committee at the 110th AIME Annual Meeting, February 22-26, The Metallurgical Society of AIME, Chicago, Illinois, pp. 569-581. ISBN 0-89520-359-6.
[11] INCOPEIRA, F.P. DEWITT, D.P. (1990). Introduction to heat transfer, John Wiley and Sons, New York.
[12] JAKOBSEN, O., LID, O. SCHREINER, P.A. (1987). A new ring furnace concept: Design and operation, In R.D. Zabreznik.ed., Light Metals 1987: Proc. of the technical sessions sponsored by the TMS Light Metals Committee at the 116th Annual Meeting, The Metallurgical Society of AIME, Denver, Colorado, pp. 497-503.
[13] JONES, S.S. BART, E.F. (1990). Binder for the ideal anode carbon, In C. M. Bickert,.ed., Light Metals 1990: Proc. of the technical sessions presented by the TMS Light Metals Committee at the 119th AIME Annual Meeting, The Metallurgical Society of AIME. Anaheim, California, pp. 611-627.
[14] KELLER, F. DISSELHORST, J.H.M. (1981). Modern anode furnace developments, In G. M. Bell.ed., Light Metals 1981: Proc. of the technical sessions sponsored by the TMS Light Metals Committee at the 110th AIME Annual Meeting, The Metallurgical Society ofAIME, pp. 611-621. ISBN 0-89520-359-6.
[15] KREITH, F. BLACK, W.Z. (1980). Basic heat transfer, Harper and Row, New York.
[16] LYDERSEN, A. (1983). Mass transfer in Engineering practice, John Wiley and Sons, New York.
[17] MONICA, E.D.F., MARLETTO, J. MARTIRENA, H. (1983). Combined mathematical simulation and experimental studies on a closed baking furnace, In E. M. Adkins.ed., Light Metals 1983: Proc. of the technical sessions sponsored by the TMS Light Metals Committee at the 112th AIME Annual Meeting, The Metallurgical Society of AIME, Atlanta, Georgia, pp. 805-817. ISBN 0-89520-359-6.
[18] PATANKAR, S.V. (1980). Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation. McGraw Hill Book Company. ISBN 0-07-048740-5.
[19] PERRY, R.H. GREEN, D.W. (1984). Perry´s Chemical Engineers´ Handbook, 6 edn.McGraw Hill Book Company ISBN 0-07-Y66482-X.
[20] REID, R.C., PRAUNITZ, J.M. POLING, B.E. (1988). The properties of gases and liquids, McGraw-Hill, New York.
[21] STEVENSON, D.T. (1988). Anode baking furnace hydrodynamic flue modeling, In L.G. Boxall.ed., Light Metals 1988: Proc. of the technical sessions by the TMS Light Metals Committee at the 117th TMS Annual Meeting, The Metallurgical Society of AIME, Phoenix, Arizona, pp. 307-314. ISBN 0-89520-359-6.
[22] TREMBLAY, F. CHARETTE, A. (1988). Cinétique de dégagement des matiéres volatiles de la pyrolyse d´electrodes de carbone industrielles, The Canadian Journal of Chemical Engineering, 6.2, 86-96 doi:10.1002/cjce.5450660113
[23] WILKENING, S. (1993). Die Aluminiumshütte alouette-unter besonderer Berücksichtigung der Anodenfertigung, Erzmetall, 4.9, 500-506.


BibTeX:
@article{MIC-1995-1-1,
  title={{Modeling and simulation of an anode carbon baking furnace}},
  author={Gundersen, Ø. and Balchen, Jens G.},
  journal={Modeling, Identification and Control},
  volume={16},
  number={1},
  pages={3--33},
  year={1995},
  doi={10.4173/mic.1995.1.1},
  publisher={Norwegian Society of Automatic Control}
};