**Page description appears here**

“A perspective on advanced strategies for process control”

Authors: Dale E. Seborg,
Affiliation: University of California, Santa Barbara
Reference: 1994, Vol 15, No 3, pp. 179-189.

     Valid XHTML 1.0 Strict


Keywords: Process control, advanced control strategies, survey paper

Abstract: This paper provides a personal perspective on the current status of advanced process control strategies. First, these strategies are classified according to the degree which they have been used in industry. Then the most prominent methods are discussed critically with emphasis placed on key design issues and unresolved research problems.

PDF PDF (1931 Kb)        DOI: 10.4173/mic.1994.3.8

DOI forward links to this article:
  [1] Ok-Hee An and Mi-Hyang Choi (2010), doi:10.5207/JIEIE.2010.24.1.009
  [2] F. Tadeo and T. Alvarez (2009), doi:10.1049/iet-cta:20070374
  [3] Un-Chul Moon and Woo-Hun Kim (2011), doi:10.5370/JEET.2011.6.3.423
  [4] Gregor Gregor i and Gordon Lightbody (2008), doi:10.1016/j.engappai.2007.11.004
  [5] Chyi-Tsong Chen and Shih-Tein Peng (1999), doi:10.1016/S0959-1524(99)00014-1
  [6] D.G. Olsen, B.R. Young and W.Y. Svrcek (2008), doi:10.1002/apj.5500100105
  [7] Donald G. Olsen, William Y. Svrcek and Brent R. Young (2005), doi:10.1080/009864490515711
  [8] Woo-Hun Kim and Un-Chul Moon (2010), doi:10.5207/JIEIE.2010.24.1.091
  [9] Elder M. Hemerly and Cairo L. Nascimento (1999), doi:10.1016/S0893-6080(98)00147-6


References:
[1] ÅSTRÖM, K.J. (1989). Toward intelligent control, IEEE Control Systems Magazine, .4, 60-64 doi:10.1109/37.24813
[2] ÅSTRÖM, K.J. HÄGGLUND, T. (1988). Automatic Tuning of PID Controllers, Instrument Soc. of America, Research Triangle Park, NC.
[3] ÅSTRÖM, K.J., HANG, C.C., PERSSON, P. HO, W.K. (1992). Towards intelligent PID control, Automatica, 28, 1-9 doi:10.1016/0005-1098(92)90002-W
[4] ÅSTRÖM, K.J. WITTENMARK, B. (1989). Adaptive Control, Addison Wesley, Reading, MA.
[5] BALCHEN, J.G. (1991). Nonlinear decoupling in process control, Model. Indent. Control, 2,81-94.
[6] BALCHEN, J.G. MUMMÉ, K. (1988). Process Control: Structures and Applications, Van Nostrand Reinhold, NY.
[7] BEQUETTE, B.W. (1991). Nonlinear control of chemical processes - a review, Ind. Eng. Chem. Res., 30, 1391-1413 doi:10.1021/ie00055a001
[8] BENSON, R.S. (1994). The process industry requirements of advanced control techniques: challenges and opportunities, Preprints of the IFAC ADCHEM ´94 Symposium, 215-224, Kyoto, Japan, May, 1994.
[9] BHAT, N.V. McAVOY, T.J. (1990). Use of neural nets for dynamic modelling and control of chemical process systems, Computers and Chem. Eng., 14, 573-582 doi:10.1016/0098-1354(90)87028-N
[10] BIEGLER, L.T. RAWLINGS, J.B. (1991). Optimization approaches to model predictive control, Proc. Chemical Process Control IV, Y. Arkun and W.H. Ray (editors) (AIChE, NY).
[11] BRISTOL, E. H. (1987). private communication, .
[12] CHEN, S., BILLINGS, S.A., COWAN, C.F.N. GRANT, P.M. (1990). Practical identification of NARMAX models using radial basis functions, Int. J. Control, 52,1327-1350 doi:10.1080/00207179008953599
[13] CLARKE, D.W., MOHTADI, C. TUFTS, P.S. (1987). Generalized predictive control - Part I, The basic algorithm. Automatica, 23, 137-148 doi:10.1016/0005-1098(87)90087-2
[14] DESBOROUGH, L. HARRIS, T. (1993). Performance assessment measures for univariate feedforward/feedback control, Can. J. Chem. Eng., 71, 605-616 doi:10.1002/cjce.5450710413
[15] DHURJATI, P.S. (editor) (1992). Proc IFAC Symposium on On-Line Fault Detection and Supervision in the Chemical Process Industries, Newark, DE.Pergamon, NY.
[16] DUBOIS, D. (1993). Fuzzy sets: A survey of engineering applications, Comput. and Chem. Eng., 17, S373-380 doi:10.1016/0098-1354(93)85055-Q
[17] DUMONT, G. (1986). Application of advanced control methods in the pulp and paper industry - a survey, Automatica, 22,143-154 doi:10.1016/0005-1098(86)90076-2
[18] FISHER, D.G. (1991). Process control: an overview and personal perspective, Can. J. Chem. Eng., 69, 5-26 doi:10.1002/cjce.5450690103
[19] FISHER, D.G. SEBORG, D.E. (1976). Multivariable Computer Control: A Case Study, Elsevier, NY.
[20] FRANK, P.M. (1990). Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy - a survey and some new results, Automatica, 26,459-474 doi:10.1016/0005-1098(90)90018-D
[21] GARCIA, C.E. MORARI, M. (1982). Internal model control I: A unifying review and some new results, Ind. Eng. Chem. Des. and Dev., 21, 308-322 doi:10.1021/i200017a016
[22] GARCIA, C.E., PRETT, D.M. MORARI, M. (1989). Model predictive control: theory and practice - a survey, Automatica, 25, 335-348 doi:10.1016/0005-1098(89)90002-2
[23] GUSCIORA, P.H., MCAMIS, SORENSEN, R.C. CUTLER, C.R. (1992). Experiences applying DMC on a Model IV FCC, Paper presented at the AIChE Annual Mtg.Miami Beach, FL, Nov., 1992.
[24] HÄGGLUND, T. (1994). Automatic monitoring of control loop performance, Conf. on Control Systems in the Pulp and Paper Industry.Control Systems ´94. Stockholm.
[25] HANG, C.C., LEE, T.H. HO, W.K. (1993). Adaptive Control, Instrument Soc. of America, Research Triangle Park., NC.
[26] HENSON, M.A. SEBORG, D.E. (1991). A critique of differential geometric strategies for process control, J. Process Control, 1, 122-139 doi:10.1016/0959-1524(91)85001-Y
[27] HENSON, M.A. SEBORG, D.E. (1991). An internal model control strategy for nonlinear systems, AIChE J., 37, 1065-1081 doi:10.1002/aic.690370711
[28] HENSON, M.A. SEBORG. D.E. (1994). Adaptive nonlinear control of a pH neutralization process, IEEE Trans. Control Systems and Technology.in press doi:10.1109/87.317975
[29] HUNT, K.J., SBARBARO, D., ZBIKOWSKI, R. GAWTHROP, P.J. (1992). Neural networks for control systems - a survey, Automatica, 28,1083-1112 doi:10.1016/0005-1098(92)90053-I
[30] KRAVARIS, C. KANTOR, J. C. (1990). Geometric methods for nonlinear process control: 1 - Background, Ind Eng. Chem. Res., 29, 2295-2310 doi:10.1021/ie00108a001
[31] MCLELLAN, P.J., HARRIS, T.J. BACON, D.W. (1990). Error trajectory descriptions of nonlinear controller designs, Chem. Eng. Sci, 45,3017-3034 doi:10.1016/0009-2509(90)80049-K
[32] LEE, P.L. (1991). Direct use of nonlinear models for process control, Proc. Chemical Process Control IV, Y. Arkun and W.H. Ray (editors) (AIChE, NY).
[33] LEONARD, J.A. KRAMER, M.A. (1991). Radial basis function networks for classifying process faults, IEEE Control Systems Mag., 1.3, 31-38 doi:10.1109/37.75576
[34] MACGREGOR, J.F. (1988). On-line statistical process control, Chem. Eng. Progr., 8.10, 21-31.
[35] MACGREGOR, J.F. (1994). Statistical process control of multivariable processes, Preprints of the IFAC ADCHEM ´94 Symposium, 215-224, Kyoto, Japan, May, 1994.
[36] MIAO, T. SERORG, D.E. (1994). Paper to be presented at the AIChE Annual Mtg, San Francisco, Nov., 1994.
[37] MORARI M. (1994). Current directions in process control theory, Preprints of the IFAC ADCHEM ´94 Symposium, 849-863, Kyoto, Japan, May, 1994.
[38] MUSKE, K., YOUNG, J., GROSDIDIER, P. TANI, S. (1991). Crude unit product quality control, Computers in Chem. Eng., 15, 629-638 doi:10.1016/0098-1354(91)87024-4
[39] PATTON, R., FRANK, P. CLARK, R. (1989). Fault Diagnosis in Dynamic Systems, Prentice Hall, NY.
[40] POTTMANN, M. SEBORG, D.E. (1992). Identification of nonlinear processes using reciprocal multiquadric functions, J. Process Control, 2,189-203 doi:10.1016/0959-1524(92)80008-L
[41] POTTMANN, M. SEBORG, D.E. (1992). Identification of nonlinear processes incorporating a prori physical knowledge, Paper presented at the 1992 AlChE Annual Mtg.Miami Beach, FL, Nov., 1992.
[42] RICHALET, J. (1993). Industrial applications of model based predictive control, Automatica, 29, 1251-1274 doi:10.1016/0005-1098(93)90049-Y
[43] RICKER, N.L. (1991). Model predictive control: state of the art, in Chemical Process control - CPC IV. Y. Arkun and W.H. Ray (editors) (AIChE, NY).
[44] RUNSDORP, J.E. SEBORG, D.E. (1976). A survey of experimental applications of multivariable control to process control problems, AIChE Symposium Series, 72,.159, 112-123.
[45] ROWAN, D.A. (1992). Beyond FALCON: industrial applications of knowledge-based systems, in Proc. IFAC Symposium on On-Line Fault Detection and Supervision in the Chemical Process Industries, P.S. Dhurjati, (editor) (Newark, DE).
[46] SAMDANI, C. (1992). Managing knowledge, Chem. Eng., 99.4, 5.
[47] SAMDANI, G. FOUHY, K. (1992). Smart software, Chem. Eng., 99.4, 30-33.
[48] SAMDANI, G., FOUHY, K. MOORE, S. (1993). Fuzzy logic: more than a play on words, Chem. Eng., 100.2, 30-33.
[49] SEBORG, D.E., EDGAR, T.F. MELLICHAMP, D.A. (1989). Process Dynamics and Control, John Wiley and Sons, NY.
[50] SEBORG, D.E., SHAH, S.L EDGAR, T.F. (1986). Adaptive control strategics for process control: a survey, AIChE J., 32, 881-913 doi:10.1002/aic.690320602
[51] SHINSKEY, F.G. (1990). How good are our controllers in absolute performance and robustness?, Measurement and Control, 23.5, 114-121.
[52] STEPHANOPOULOS, G. HAN, C. (1994). Intelligent systems in process engineering: a review, Preprints of the 5th Internat. Symposium on Process Systems Eng..PSE 94, 1339-1366, Kyongju, Korea, June, 1994.
[53] THOMPSON, L. MERTZ, G. (1993). Real-time expert system implementation at Monsanto-Krummrich, Automatica, 29, 1177-1183 doi:10.1016/0005-1098(93)90045-U
[54] WADSWORTH, H.M., STEPHENS, K.S. GODFREY, A.B. (1986). Modern Methods for Quality Control and Improvement, John Wiley, NY.
[55] ZUMWALT, R.E. WOLFANG, G. (1980). Directions in computer control research and practice, Pmc. of the 1980 Joint Automatic Control Conf., San Francisco, paper TA5-A.
[56] YAMAMOTO, S. HASHIMOTO, I. (1991). The view from Japanese industry, in Chemical Process Control - CPC IV, Y. Arkun and W. H. Ray (editors) (AIChE, NY).


BibTeX:
@article{MIC-1994-3-8,
  title={{A perspective on advanced strategies for process control}},
  author={Seborg, Dale E.},
  journal={Modeling, Identification and Control},
  volume={15},
  number={3},
  pages={179--189},
  year={1994},
  doi={10.4173/mic.1994.3.8},
  publisher={Norwegian Society of Automatic Control}
};

News

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.


Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.


Jan 2012: Follow MIC on your smartphone by using the RSS feed.

Smartphone


July 2011: MIC passes 1000 ISI Web of Science citations.


Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.


Dec 2009: A MIC group is created at LinkedIn and Twitter.


Oct 2009: MIC is now fully updated in ISI Web of Knowledge.