## “An Efficient Pseudo-Inverse Solution to the Inverse Kinematic Problem for 6-Joint Manipulators”Authors: Stefano Chiaverini and Olav Egeland,
Affiliation: University of Napoli and NTNU, Department of Engineering Cybernetics
Reference: 1990, Vol 11, No 4, pp. 201-222. |

**Keywords:**Robotics, inverse kinematics, singularities

**Abstract:**The use of the pseudo-inverse Jacobian matrix makes the solution of the inverse kinematic problem well-defined even at singular configurations of the robot arm, in the neighbourhood of a singularity, however, the computed solution often results in high joint velocities which may not be feasible to the real manipulator. Furthermore, the pseudo-inverse solution is computationally expensive, thus preventing real-time applications.

PDF (2295 Kb) DOI: 10.4173/mic.1990.4.3

**DOI forward links to this article:**

[1] Stefano Chiaverini, Giuseppe Oriolo and Anthony A. Maciejewski (2016), doi:10.1007/978-3-319-32552-1_10 | |

[2] Ying Kong, Hui-juan Lu, Yu Xue and Hai-xia Xia (2016), doi:10.1016/j.neucom.2016.05.091 | |

[3] Alessandro Bettini, Alessandro De Luca and Giuseppe Oriolo (2000), doi:10.1016/S1474-6670(17)37962-4 | |

[4] Stefano Chiaverini, Giuseppe Oriolo and Ian D. Walker (2008), doi:10.1007/978-3-540-30301-5_12 |

**References:**

[1] ABOAF, E.W. PAUL, R.P. (1987). Living with the singularity of robot wrists, 1987 IEEE International Conference on Robotics and Automation, Mar-Apr 1987, Raleigh, NC, pp. 1713-1717.

[2] BAILLIEUL, J., HOLLERBACH, J.M. BROCKETT, R.W. (1984). Programming and control of kinematically redundant manipulators, 23rd IEEE Conference on Decision and Control, Dec. 1984. Las Vegas, NV, pp. 768-774.

[3] BALESTRINO, A., DE MARIA, G. SCIAVICCO, L. (1984). Robust control of robotic manipulators, Preprints of the 9th IFAC World Congress, vol. 6, pp. 80-85.

[4] BEN-ISRAEL, A. GREVILLE, T.N.E. (1974). Generalized inverses: Theory and applications, New York, Wiley.

[5] CHIACCHIO, P. SICILIANO, B. (1988). Achieving singularity robustness: an inverse kinematic solution algorithm for robot control, IEE Control Engineering Series 36 - Robot Control: Theory and Applications, K. Warwick and A. Pugh Eds..Hitchin: Peter Peregrinus Ltd., pp. 149-156.

[6] CHIAVERINI, S. EGELAND, O. (1990). A solution to the singularity problem for six-joint manipulators, 1990 IEEE International Conference on Robotics and Automation, May 1990. Cincinnati, OH, pp. 644-649.

[7] DAS, H., SLOTINE, J.-J.E. SHERIDAN, T.B. (1988). Inverse kinematic algorithms for redundant systems, 1988 IEEE International Conference on Robotics and Automation, Apr. 1988. Philadelphia, PA, pp. 43-48.

[8] EGELAND, O. (1987). Task-space tracking with redundant manipulators, IEEE Journal of Robotics and Automation, 3, 471-475 doi:10.1109/JRA.1987.1087118

[9] EGELAND, O. (1989). Dynamic coordination in a manipulator with 7 joints, 1989 IEEE International Conference on Robotics and Automation, May 1989. Scottsdale, AZ, pp. 125-130.

[10] HOLLERBACH, J.M. (1984). Optimum kinematic design for a seven degree of freedom manipulator, Preprints of the 2nd International Symposium of Robotics Research, pp. 349-356.

[11] KHATIB, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation, IEEE Journal of Robotics and Automation, 3, 43-53 doi:10.1109/JRA.1987.1087068

[12] MAYNE, D.Q. (1969). On the calculation of pseudoinverses, IEEE Transactions on Automatic Control, 204-205 doi:10.1109/TAC.1969.1099150

[13] NAKAMURA, Y. HANAFUSA, H. (1986). Inverse kinematic solutions with singularity robustness for robot manipulator control, Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control, 108, 163-171.

[14] NAKAMURA, Y., HANAFUSA, H. YOSHIKAWA, T. (1987). Task-priority based redundancy control of robot manipulators, International Journal of Robotics Research, 6.2, 3-15 doi:10.1177/027836498700600201

[15] SCIAVICCO, L. SICILIANO, B. (1988). A solution algorithm to the inverse kinematic problem for redundant manipulators, IEEE Journal of Robotics and Automation, 4, 403-410 doi:10.1109/56.804

[16] TAYLOR, R.H. (1979). Planning and execution of straight-line manipulator trajectories, IBM Journal of Research and Developments, 23, 424-436.

[17] WAMPLER II, C.W. (1986). Manipulator inverse kinematic solutions based on vector formulations and damped least-squares method, IEEE Transactions on Systems, Man, and Cybernetics, 16, 93-101 doi:10.1109/TSMC.1986.289285

[18] WAMPLER II, C.W. (1987). Inverse kinematic functions for redundant manipulators, 1987 IEEE International Conference on Robotics and Automation, Mar. Apr. 1987, Raleigh, NC, pp. 610-617.

[19] WHITNEY, D.E. (1972). The mathematics of coordinated control of prosthetic arms and manipulators, Transactions of the ASME Journal of Dynamic Systems, Measurement, and control, 94, 303-309.

[20] WOLOVICH, W.A. ELLIOTT, H. (1984). A computational technique for inverse kinematics, 23rd IEEE Conference on Decision and Control, Dec. 1984. Las Vegas, NV, pp. 1359-1363.

[21] ZADEH, L. DESOER, C.A. (1963). Linear System Theory, New York, McGraw-Hill, p. 577.

**BibTeX:**

@article{MIC-1990-4-3,

title={{An Efficient Pseudo-Inverse Solution to the Inverse Kinematic Problem for 6-Joint Manipulators}},

author={Chiaverini, Stefano and Egeland, Olav},

journal={Modeling, Identification and Control},

volume={11},

number={4},

pages={201--222},

year={1990},

doi={10.4173/mic.1990.4.3},

publisher={Norwegian Society of Automatic Control}

};