**Page description appears here**

“Modeling and Simulation of Physiology and Population-Dynamics of Copepods - Effects of Physical and Biological Parameters”

Authors: Dag Slagstad,
Affiliation: SINTEF
Reference: 1981, Vol 2, No 3, pp. 119-162.

     Valid XHTML 1.0 Strict

Keywords: Modeling, phytoplankton, zooplankton, copepods, ecosystem, population dynamics, simulation

Abstract: A detailed model of the physiology and vertical migration behaviour of marine copepods of the ca/anus is developed. A two-dimensional population model calculates the size and developmental structure of the population in relation to its own dynamics and the environment. Examination of the effect on the population dynamics and production of copepods by changing the physical and biological parameters is performed.

PDF PDF (12184 Kb)        DOI: 10.4173/mic.1981.3.1

DOI forward links to this article:
  [1] P. Wassmann and D. Slagstad (1993), doi:10.1007/BF01681977
  [2] Ø. FIKSEN, J. GISKE and D. SLAGSTAD (1995), doi:10.1111/j.1365-2419.1995.tb00143.x
  [3] ULF BÅMSTEDT, HANS CHRISTIAN EILERTSEN, KURT S. TANDE, DAG SLAGSTAD and HEIN RUNE SKJOLDAL (1991), doi:10.1111/j.1751-8369.1991.tb00658.x
  [4] Dag Slagstad, Y. Olsen and S. Tilseth (1987), doi:10.4173/mic.1987.1.7
  [5] Dag L. Aksnes and Ulf Lie (1990), doi:10.1016/0272-7714(90)90038-S
  [6] Jens G. Balchen (2000), doi:10.4173/mic.2000.1.1
  [7] Hagen Radtke, Thomas Neumann and Wolfgang Fennel (2013), doi:10.1016/j.jmarsys.2012.07.010
  [8] Ole Jacob Broch, Dag Slagstad and Mathijs Smit (2013), doi:10.1016/j.marenvres.2012.12.003
  [9] H. Goosse and J.-H. Hecq (1994), doi:10.1016/0924-7963(94)90009-4
  [10] Geir Huse and Jarl Giske (1998), doi:10.1016/S0165-7836(98)00134-9
  [11] D. Slagstad and K. S. Tande (1996), doi:10.1080/00785326.1995.10429847
  [12] DAG SLAGSTAD and KJELL STØLE-HANSEN (1991), doi:10.1111/j.1751-8369.1991.tb00643.x
  [13] F. Carlotti, J. Giske and F. Werner (2000), doi:10.1016/B978-012327645-2/50013-X
  [14] Dag Slagstad (1984), doi:10.4173/mic.1984.3.1
  [15] F. Carlotti, L. Eisenhauer, R. Campbell and F. Diaz (2013), doi:10.1016/j.jmarsys.2013.11.007
  [16] Dag Slagstad (1982), doi:10.4173/mic.1982.2.2
  [17] D. Slagstad, I.H. Ellingsen and P. Wassmann (2011), doi:10.1016/j.pocean.2011.02.009
  [18] Dag Slagstad and Kurt S. Tande (2007), doi:10.1016/j.dsr2.2007.08.024
  [19] Morten Omholt Alver, Ole Jacob Broch, Webjørn Melle, Espen Bagøien and Dag Slagstad (2016), doi:10.1016/j.jmarsys.2016.04.004
  [20] Lisette de Hoop, Ole Jacob Broch, A. Jan Hendriks and Frederik de Laender (2016), doi:10.1016/j.marenvres.2016.06.008
  [21] Dag Slagstad and Kjell Støle-Hansen (1991), doi:10.3402/polar.v10i1.6736
  [22] Ulf Bmstedt, Hans Christian Eilertsen, Kurt S. Tande, Dag Slagstad and Hein Rune Skjoldal (1991), doi:10.3402/polar.v10i2.6751
  [23] D. Slagstad, Y. Olsen and S. Tilseth (1987), doi:10.1016/S1474-6670(17)59182-X
  [24] CJ Beegle-Krause, Tor Nordam, Mark Reed and Ragnhild Lundmark Daae (2017), doi:10.7901/2169-3358-2017.1.1507

[1] ANDERSON, G.C., FROST, B.W., PETERSON, W.K. (1972). On the vertical distribution of zooplankton in relation to chlorophyll concentration, In Biological Oceanography of the Northern North Pacific Ocean, edited by A.Y. Takenouti et al, pp. 341-345.
[2] BALCHEN, J.G. (1976). Modelling of the biological state of fishes, Report STF48 A76023, The Foundation of Scientific and Industrial Research.SINTEF, Trondheim, Norway.
[3] BALCHEN, J.G. (1980). Modeling and identification of marine ecological systems with applications in management of fish resources and planning of fisheries operations, Modeling, Identification and Control, 1, 67-68 doi:10.4173/mic.1980.2.1
[4] COURANT, R., HILBERT, D. (1962). Methods of Mathematical Physics, Vol, II. Interscience.
[5] EBENHÖH, W. (1980). A model of the dynamics of plankton patchiness, Modeling, Identification and Control, 1, 69-92 doi:10.4173/mic.1980.2.2
[6] ELLERTSEN, B., SOLEMDAL, P., TILSETH, S., WESTGÅRD, T., ØIESTED, V. (1981). Feeding and vertical distribution of cod larvae in relation to availability of prey organisms, In Early. Life History of Fish, edited by K. Sherman.ICES/ELH Symp. FM: Poter 1, Woods Hole, 1979.
[7] FROST, B.W. (1972). Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanus pacificus, Limnol. Oceanogr., 17, 805-815.
[8] FROST, B.W. (1977). Feeding behaviour of Calcines pacificus in mixtures of food particles, Limnol. Oceanogr., 22, 472-491.
[9] GELLER, W. (1975). Die Nährungsaufnahme von Daphnia pulex in Abhängigkeit von der Futterkonzentration, der Temperatur, der Körpergrösse und dem Hungerzustand der Tiere, Arch. Hydrobiol., Suppl., 48, 47-107.
[10] HARGRAVE, B.T., GEEN, G.H. (1970). Effect of copepods grazing on two natural phytoplankton populations, J. Fish. Res. Bd Canada, 27, 1395-1403.
[11] HIMMELBLAU, D.M., BISCHOFF, K.B. (1968). Process analysis and simulation, Deterministic Systems, J. Wiley and Sons.
[12] HOLLING, C.S. (1966). The functional response of invertebrate predators for the prey density, Mem entomological Soc. Canada, 48, 5-86.
[13] HORWOOD, J.W. (1973). Some aspects of the dynamics of Calanus finmarchicus, in a copepod patch, discussed in relation to stage duration time, International Council for the Exploration of Sea, C.M. 1973/L:13.Plankton Committee.
[14] ISAACS, J.D., TONT, S.A., WICK, G.L. (1974). Deep scattering layers: Vertical migration as a tactic for finding food, Deep-Sea Res., 21, 651-656.
[15] JAMART, B.M., WINTER, D.F., BANSE, K., ANDERSON, G.C., LAM, R.K. (1977). A theoretical study of phytoplankton growth and nutrient distribution in the Pacific Ocean off the northwestern U, S. coast. Deep-Sea Res., 24, 753-773.
[16] KAMSHILOV, M.M. (1960). Feeding of ctenophore Beroe cucumis, Fabr. Dokl. Acad. Sci. U.S.S.R..Sect. Biol. Sci., 130, 128-129.
[17] KIBBY, H.V. (1971). Effect of temperature on the feeding behaviour of Daphnia rosea, Limnol. Oceanogr., 16, 580-581.
[18] KLEIBER, M. (1975). The Fire of Life, Robert E. Krieger Publishing Co., p.453.
[19] LAM, K., FROST, B.W. (1976). Model of copepod filtering response to changes in size and concentration of food, Limnol. Oceanogr., 21, 490-500.
[20] LEE, R.F., NEVENZEL, J.C., PAFFENHÖFER, G.A., BENSON, A.A. (1970). The metabolism of wax esters and other lipids by the marine copepod, Calanus helgolandicus. J. Lipid Res., 11, 237-240.
[21] LEHMAN, J.T. (1976). The filter-feeder as art optimal forager and the predicted shapes of feeding curves, Limnol. Oceanogr., 21, 501-516.
[22] MCALLISTER, C.D. (1970). Zooplankton rations, phytoplankton mortality and the estimation of marine production, In Marine Food Chains, edited by J.H. Steele.Oliver and Boyd, pp. 419-457.
[23] McALLISTER, C.D. (1971). Some aspects of nocturnal and continuous grazing by planktonic herbivores in relation to production studies, Fish Res. Bd Canada Tech. Rep., 248.
[24] MCLAREN, I.A. (1963). Effects of temperature on growth of zooplankton, and adaptive value of vertical migration, J. Fish. Res. Bd Canada, 20, 685-727.
[25] MARSHALL, S.M. (1973). Respiration and feeding in copepods, In Advances in Marine Biology, Vol. 11, edited by F. Russel and M. Yonge, pp. 57-120.
[26] MARSHALL, S.M., ORR, A.P. (1972). The Biology of a Marine Copepod, Springer-Verlag.
[27] MAYZAUD, P., POULET, S.A. (1978). The importance of the time factor in the response of zooplankton to varying concentrations of naturally occurring particulate matter, Limnol. Oceanogr., 23, 1144-1154.
[28] MULLIN, M.M. (1963). Some factors affecting the feeding of marine copepods of the genus Calanus, Limnol. Oceanogr., 8, 239-250.
[29] MULLIN, M.M., BROOKS, E.R. (1970). Growth and metabolism of two planktonic, marine copepods as influenced by temperature and type of food, In Marine Food Chains, edited by J.H. Steele (Symposium Aarhus Danmark, 1968) (Oliver and Boyd), pp. 74-95.
[30] MULLIN, M.M., BROOKS, E.R. (1970). The effect of concentration of food on body weight, cumulative ingestion, and rate of growth of marine copepod Calanus helgolandicus, Limnol. Oceanogr., 15, 748-755.
[31] MULLIN, M.M., BROOKS, E.R. (1972). The vertical distribution of juvenile Calanus, copepod and phytoplankton within the upper 50m of water off La Jolla California. In Biological Oceanography of the North Pacific Ocean, edited by A.Y. Takenouti, pp. 347-354.
[32] MULLIN, M.M., STEWART, E.F., FUGLISTER, F.J. (1975). Ingestion by planktonic grazers as a function of concentration of food, Limnol. Oceanogr., 20, 259-262.
[33] OSTER, G. (1977). Lectures in population dynamics, In Modern Modeling of Continuum Phenomena, edited by R.C. DiPrima.
[34] PACKARD, T.T., BLASCO, D. (1974). Nitrate reductase activity in upwelling regions, 2. Ammonia and light dependence. Tethys, 6, 269-280.
[35] PAFFENHÖFER, G.A. (1970). Cultivation of Calanus helgolandicus under controlled conditions, Helgoländer wiss. Meeresunters., 20, 346-359.
[36] PAFFENHÖFER, G.A. (1976). Continuous and nocturnal feeding of the marine planktonic copepod Calanus helgolandicus, Bull. Marine Sci, 26, 49-58.
[37] PARSONS, T.R., LEBRASSEUR, R.J. (1970). The availability of food to different tropic levels in the marine food chain, In Marine Food Chains, edited by J.H. Steele.Oliver and Boyd, pp. 325-343.
[38] PORTER, K.G. (1975). Viable passage of gelatinous green algae ingested by Daphnia, Verh. Internat. Verein. Limnol., 19, 177-180.
[39] REEVE, M.R., WALTER, M.A. (1978). Nutritional ecology of etenophores - A review of recent research, In Advances in Marine Biology, Vol. 15, edited by F.S. Russel and M. Yonge, pp. 249-287.
[40] SAETRE, R. (1978). The Atlantic inflow to the North Sea and the Skagerak indicated by surface observations, International Council for the Exploration of the Sea, C.M. 1978/C:17.Hydrography Committee.
[41] SINKO, J.W. (1969). A new mathematical model for describing the age-size structure of population of simple animals, Ph.D. Thesis, University of Rochester.
[42] SLAGSTAD, D. (1980). Modeling and simulation of physiology and population dynamics of copepods, Effects of physical and biological parameters. Dr.ing. Thesis, University of Trondheim, The Norwegian Institute of Technology, Div. of Eng. Cybernetics, 179 pp.
[43] SLAGSTAD, D., TANDE, E. (1981). A mathematical model of the assimilation process in the copepod Calanus finmarchicus, Gunnerus: Computer simulations discussed in relation to experimental results. 15th European Symposium on Marine Biology, Kiel, Sept. 1980.
[44] STEELE, J.H. (1962). Environmental control of photosynthesis, Linmol. Oceanogr., 7, 137-150.
[45] STEELE, J.H. (1974). The Structure of Marine Ecosystems, Cambridge, Massachusetts: Harvard University Press, 128 pp.
[46] VIDAL, J. (1980). Physioecology of zooplankton, I. Effects of phytoplankton concentration, temperature, and body size on the growth rate of Calanus pacificus and Pseudocalanus sp. Marine Biol., 56, 111-134.
[47] WALSH, J.J., DUGDALE, R.C. (1972). Nutrient submodels and simulation models of phytoplankton production in the sea, In Nutrients in Natural Waters, edited by J. Kramer and H. Allen.New York: J. Wiley and Sons, pp. 171-191.
[48] WIBORG, K.E. (1954). Investigations on zooplankton in coastal and offshore waters of Western and Northwestern Norway, With special reference to the copepods. Fiskeridirektoratets skrifter, Serie: Havundersøkelser, XI.1.
[49] WROBLEWSKI, J.S. (1977). A model of phytoplankton plume formation during variable Oregon upwelling, J. mar. Res., 32, 357-394.
[50] WROBLEWSKI, J.S., O´BRIEN, J..1. (1976). A spatial model of phytoplankton patchiness, Marine Biol., 35, 161-175 doi:10.1007/BF00390938
[51] WROBLEWSKI, J.S., O´BRIEN, J.J. (1979). The role of modeling in biological oceanography, In Ocean Handbook, edited by R.A. Horne and D.W. Hood.Marcel Dekker.

  title={{Modeling and Simulation of Physiology and Population-Dynamics of Copepods - Effects of Physical and Biological Parameters}},
  author={Slagstad, Dag},
  journal={Modeling, Identification and Control},
  publisher={Norwegian Society of Automatic Control}


May 2016: MIC reaches 2000 DOI Forward Links. The first 1000 took 34 years, the next 1000 took 2.5 years.

July 2015: MIC's new impact factor is now 0.778. The number of papers published in 2014 was 21 compared to 15 in 2013, which partially explains the small decrease in impact factor.

Aug 2014: For the 3rd year in a row MIC's impact factor increases. It is now 0.826.

Dec 2013: New database-driven web-design enabling extended statistics. Article number 500 is published and MIC reaches 1000 DOI Forward Links.

Jan 2012: Follow MIC on your smartphone by using the RSS feed.


July 2011: MIC passes 1000 ISI Web of Science citations.

Mar 2010: MIC is now indexed by DOAJ and has received the Sparc Seal seal for open access journals.

Dec 2009: A MIC group is created at LinkedIn and Twitter.

Oct 2009: MIC is now fully updated in ISI Web of Knowledge.